首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  2021年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
Adrenomedullin (ADM) is a potent stimulator of osteoblastic activity and promotes bone growth in vivo. ADM receptors are formed by heterodimerization of the CRLR and a RAMP2 or RAMP3 molecule. Since glucocorticoid responsive elements were recently identified in the human CRLR promoter and that glucocorticoids exert a major action in bones, we investigated the acute effect of dexamethasone (Dex) treatment on ADM receptor components in osteoblastic cell types: the MC3T3-E1 cells and calvaria-derived osteoblastic cells. Changes in expression of CRLR and RAMPs molecules were evaluated at mRNA levels using RT-PCR and at protein levels by Western blot analysis. We found that Dex increased expression of RAMP1 and RAMP2 mRNA in a time-dependent but dose-independent manner, while RAMP3 was unchanged. In contrast, Dex decreased the CRLR mRNA expression and these changes were reflected at protein levels. We suggest that Dex, in osteoblastic cells, altered ADM receptor by inhibition of CRLR expression and consequently could impair the ADM anabolic effect on bone. Our findings could explain in part, the detrimental side effects observed at bone level during glucocorticoid therapy.  相似文献   
22.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   
23.
For clarifying a process of de-differentiation in culturing chondrocytes, the present study was undertaken to investigate the secretion of adrenomedullin (AM) by chondrocyte phenotype cells and whether or not AM effects this proliferation in a cAMP-dependent fashion. Chondrocyte phenotype cells expressed AM and the AM receptor, and secreted high concentration of AM into the culture medium. When added to cultures, AM increased the intracellular cAMP level and decreased the number of these cells in a similar concentration-dependent fashion. Addition of forskolin and dibutyryl-cAMP caused a significant decrease in the number of these cells. Furthermore, the effect of AM was inhibited by a cAMP-dependent protein kinase A inhibitor (H89). The present findings indicate that AM has an autocrine/paracrine type of anti-proliferative effect on these cells mediated via a cAMP-dependent pathway and raise the possibility that AM plays a role in the local modulation of a process of de-differentiation by culturing chondrocyte phenotype cells.  相似文献   
24.
Abstract: Adrenomedullin, originally discovered from pheochromocytoma, is a member of the calcitonin gene-related peptide family. The production and secretion of adrenomedullin by cultured human astrocytes were studied by northern blot analysis and radioimmunoassay. Northern blot analysis showed the expression of adrenomedullin mRNA in cultured human astrocytes. Immunoreactive adrenomedullin concentrations in the culture medium were 29.6 ± 1.2 fmol/105 cells/24 h (mean ± SEM, n = 4). Treatment with interferon-γ (100 U/ml), tumor necrosis factor-α (1 and 10 ng/ml), or interleukin-1β (1 and 10 ng/ml) for 24 h caused >20-fold increases in immunoreactive adrenomedullin levels in the culture medium of human astrocytes. On the other hand, northern blot analysis showed only small increases (∼40%) in the adrenomedullin mRNA expression of human astrocytes with either 100 U/ml interferon-γ or 10 ng/ml interleukin-1β and no noticeable change with tumor necrosis factor-α. Reverse phase HPLC of the medium extracts of human astrocytes treated with interferon-γ, tumor necrosis factor-α, or interleukin-1β showed that most of immunoreactive adrenomedullin was eluted in the position of adrenomedullin-(1-52). On the other hand, immunoreactive adrenomedullin in the medium of human astrocytes without cytokine treatment was eluted earlier than the adrenomedullin standard, suggesting that this immunoreactive adrenomedullin represents adrenomedullin with some modifications or fragments of the adrenomedullin precursor. The present study has shown the production and secretion of adrenomedullin by human astrocytes and increased secretion of adrenomedullin by cytokines.  相似文献   
25.
Adrenomedullin, originally identified in the adrenal medulla, has binding sites in the adrenal gland; however, its role in the adrenal medulla is unclear. This study was designed to characterise adrenomedullin binding sites in the rat adrenal medulla, using ligand binding studies, immunocytochemistry, and mRNA analysis. A single population of specific adrenomedullin receptors was identified in adrenal medullary homogenates. 125I-Adrenomedullin was displaced only by adrenomedullin1-50 and not by calcitonin gene-related peptide or amylin at concentrations up to 100 nmol/L. The receptor K(D) was 3.64 nmol/L with a receptor density of 570 fmol/mg of protein. Analysis of mRNA revealed that the genes encoding both the putative adrenomedullin receptors, termed calcitonin receptor-like receptor (CRLR) and L1, were expressed in the rat adrenal medulla. Dual-colour indirect-labelled immunofluorescence was used to localise phenylethanolamine N-methyltransferase (PNMT) and the adrenomedullin receptor in the same section. PNMT is the enzyme that converts noradrenaline to adrenaline and is not expressed in noradrenaline-secreting cells. These studies revealed that both CRLR and L1 were expressed only in cells that did not express PNMT, suggesting that adrenomedullin receptors are only found in noradrenaline-secreting cells. Further evidence to support this conclusion was provided by the demonstration of colocalisation of adrenomedullin receptors with dopamine beta-hydroxylase, confirming the presence of the receptors in medullary chromaffin cells. Taken together, these data suggest that adrenomedullin acts through a specific adrenomedullin receptor in the rat adrenal medulla. RT-PCR and northern blot analysis revealed greater abundance of mRNA for L1 than for CRLR, possibly suggesting that L1 may be the major adrenomedullin receptor expressed in this tissue. As it has been reported that adrenomedullin is synthesised predominantly by adrenaline-secreting cells, it appears likely that adrenomedullin is a paracrine regulator in the adrenal medulla.  相似文献   
26.
27.
Ovarian folliculogenesis has been studied as a model of hormonal regulation of development and differentiation, cell death, and cell-cell communication. In addition to gonadotropins from the pituitary and follicular paracrine factors, oocyte secreted factors have been shown to play critical roles in the regulation of follicular cell functions. Except for the well characterized BMP family proteins, including GDF9 and BMP15, oocytes are known to secrete oocyte secreted factors that are important for the regulation of cumulus cell survival and the maintenance of tertiary structure of cumulus cell-enclosed oocyte complexes (COCs). Based on genomic screening and studies of COCs cultured in vitro, we showed that intermedin (IMD)/adrenomedullin 2 (ADM2) is a novel oocyte-derived ligand important for the regulation of cell interactions in COCs that functions, in part, by suppressing cumulus cell apoptosis. Consistently, we showed that suppression of IMD/ADM2 signaling in growing rat ovaries in vivo leads to oocyte atresia and aberrant cell cycle progression in follicular cells. Together, our studies indicated that mammalian oocytes deploy a G protein-coupled receptor ligand to coordinate normal interactions of oocytes and cumulus cells and provided a better understanding of how the tertiary structure of a COC is maintained as follicles undergo exponential growth during the late stages of folliculogenesis.  相似文献   
28.
Adrenomedullin: molecular mechanisms and its role in cardiac disease   总被引:3,自引:0,他引:3  
Yanagawa B  Nagaya N 《Amino acids》2007,32(1):157-164
Summary. Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3′,5′-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases.  相似文献   
29.
Li L  Tang F  O WS 《Theriogenology》2012,77(9):1846-1853
Concentrations of adrenomedullin (ADM) in circulation, the uterus, and corpora lutea (CL) increase during pregnancy. We previously reported a temporal-spatial pattern of ADM level and gene expression of Adm and its receptor components, from early pregnancy through midpregnancy to late pregnancy in rats. Two earlier reports using an in vivo model of ADM antagonism demonstrated the important roles of ADM in the post-implantation period. Treatment with ADM receptor blocker hADM22-52 starting from gestation Day 8 or Day 14 resulted in fetal-placental growth restriction and reduction in litter size. In this study, the endogenous ADM actions were abolished in the preimplantation period by infusing the antagonist for the ADM receptor (hADM22-52) with the osmotic (Alzet) pump from Days 1-4 of pregnancy. We inferred that ADM, acting through the ADM receptor, had critical roles during preimplantation, as brief inhibition of ADM action by hADM22-52 during this period reduced litter size by restricting placental growth and increasing fetal resorption in midpregnancy.  相似文献   
30.
Dunworth WP  Fritz-Six KL  Caron KM 《Peptides》2008,29(12):2243-2249
The lymphatic vascular system functions to maintain fluid homeostasis by removing fluid from the interstitial space and returning it to venous circulation. This process is dependent upon the maintenance and modulation of a semi-permeable barrier between lymphatic endothelial cells of the lymphatic capillaries. However, our understanding of the lymphatic endothelial barrier and the molecular mechanisms that govern its function remains limited. Adrenomedullin (AM) is a 52 amino acid secreted peptide which has a wide range of effects on cardiovascular physiology and is required for the normal development of the lymphatic vascular system. Here, we report that AM can also modulate lymphatic permeability in cultured dermal microlymphatic endothelial cells (HMVEC-dLy). AM stimulation caused a reorganization of the tight junction protein ZO-1 and the adherens protein VE-cadherin at the plasma membrane, effectively tightening the endothelial barrier. Stabilization of the lymphatic endothelial barrier by AM occurred independently of changes in junctional protein gene expression and AM−/− endothelial cells showed no differences in the gene expression of junctional proteins compared to wildtype endothelial cells. Nevertheless, local administration of AM in the mouse tail decreased the rate of lymph uptake from the interstitial space into the lymphatic capillaries. Together, these data reveal a previously unrecognized role for AM in controlling lymphatic endothelial permeability and lymphatic flow through reorganization of junctional proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号