首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   25篇
  国内免费   8篇
  2023年   6篇
  2021年   4篇
  2020年   10篇
  2019年   26篇
  2018年   27篇
  2017年   17篇
  2016年   13篇
  2015年   11篇
  2014年   46篇
  2013年   94篇
  2012年   18篇
  2011年   47篇
  2010年   32篇
  2009年   67篇
  2008年   57篇
  2007年   56篇
  2006年   49篇
  2005年   38篇
  2004年   18篇
  2003年   27篇
  2002年   14篇
  2001年   13篇
  2000年   15篇
  1999年   11篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   4篇
  1991年   9篇
  1990年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   14篇
  1984年   36篇
  1983年   23篇
  1982年   21篇
  1981年   27篇
  1980年   21篇
  1979年   15篇
  1978年   15篇
  1977年   18篇
  1976年   15篇
  1975年   11篇
  1974年   9篇
  1973年   20篇
  1972年   6篇
排序方式: 共有1065条查询结果,搜索用时 62 毫秒
41.
A novel spectrofluorometric method for the determination of furosemide (FUR) is described. The method is based on enhancement of fluorescence emission of FUR in the presence of zinc (II) complexes of 1,4‐bis(imidazol‐1‐ylmethyl)benzene. Under optimum conditions, the enhanced fluorescence intensity is linearly related to the concentration of FUR. The proposed method has been successfully applied to the determination of FUR in pharmaceutical preparations. The possible mechanism of this reaction is discussed briefly based on data from fluorescence spectroscopy, UV–vis absorption and infrared spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
42.
Artificial ribonucleases of AnBCL series were synthesized by solid‐phase method. They consist of a hydrophobic alkyl radical A (n = 3–12 carbon atoms), an “RNA‐binding domain” B (bisquaternary salt of 1,4‐diazabicyclo[2.2.2]octane), a “catalytic domain” C (histidine residue) and a “linker” L that joins the domains B and C. The effect of the alkyl radical on the catalytic properties of the chemical catalyst was studied using three activated phosphate ester substrates: p‐nitrophenyl phosphate, bis‐p‐nitrophenyl phosphate, and thymidine‐3′‐p‐nitrophenyl phosphate.  相似文献   
43.
Abstract

As a part of the research aimed on identification of new nucleobase derivatives with improved biological properties, a series of novel 8-substituted acyclovir derivatives were synthesized. The 8-azidoguanosine 4 and novel 8-azidoacyclovir 9 were synthesized from commercially available guanosine 1 and acyclovir 6 which were transformed into 8-bromopurine derivatives 2 and 7 and hydrazine derivatives 3 and 8, respectively. 8-Triazolylguanosine 5 and 8-triazolylacyclovir analogs 1012 were successfully synthesized via the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of azides 4 and 9 with propargyl alcohol, 4-pentyn-1-ol and 5-hexyn-1-ol. The novel 1,4-disubstituted 1,2,3-triazolyl compounds 5, 1012 were evaluated for antiviral activity against selected DNA and RNA viruses and cytostatic activity against normal Madine Darby canine kidney (MDCK I) cells, and seven tumor cell lines (HeLa, CaCo-2, NCI-H358, Jurkat, K562, Raji and HuT78). While tested compounds exerted no antiviral activity at nontoxic concentrations, the 8-triazolyl acyclovir derivative 10, with the shortest alkyl substituent at the C-4 of triazole ring, was found to be the most active against the CaCo-2 cell line.  相似文献   
44.
Purpose: Crosstalk between Aurora-A kinase and p53 has been proposed. While the genetic amplification of Aurora-A has been observed in many human cancers, how p53 is regulated by Aurora-A remains ambiguous. In this study, Aurora-A-mediated phosphorylation of p53 was analyzed by mass spectrometry in order to identify a new phosphorylation site. Subsequently, the functional consequences of such phosphorylation were examined. Experimental design: In vitro phosphorylation of p53 by Aurora-A was performed and the phosphorylated protein was then digested with trypsin and enriched for phosphopeptides by immobilized metal affinity chromatography. Subsequently, a combination of β-elimination and Michael addition was applied to the phosphopeptides in order to facilitate the identification of phosphorylation sites by MS. The functional consequences of the novel phosphorylation of p53 on the protein–protein interactions, protein stability and transactivation activity were then examined using co-immunoprecipitation, Western blotting and reporter assays. Results: Ser-106 of p53 was identified as a novel site phosphorylated by Aurora-A. A serine-to-alanine mutation at this site was found to attenuate Aurora-A-mediated phosphorylation in vitro. In addition, phosphate-sensitive Phos-tag SDS-PAGE was used to confirm that the Ser-106 of p53 is in vivo phosphorylated by Aurora-A. Finally, co-immunoprecipitation studies suggested that Ser-106 phosphorylation of p53 decreases its interaction with MDM2 and prolongs the half-life of p53. Conclusions: The inhibition of the interaction between p53 and MDM2 by a novel Aurora-A-mediated p53 phosphorylation was identified in this study and this provides important information for further investigations into the interaction between p53 and Aurora-A in terms of cancer biology.  相似文献   
45.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
46.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   
47.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of substituted 1,4-dihydroindeno[1,2-c]pyrazoles inhibitors, using molecular docking and comparative molecular field analysis (CoMFA). The docking results from GOLD 3.0.1 provide a reliable conformational alignment scheme for the 3D-QSAR model. Based on the docking conformations and alignments, highly predictive CoMFA model was built with cross-validated q 2 value of 0.534 and non-cross-validated partial least-squares analysis with the optimum components of six showed a conventional r 2 value of 0.911. The predictive ability of this model was validated by the testing set with a conventional r 2 value of 0.812. Based on the docking and CoMFA, we have identified some key features of the 1,4-dihydroindeno[1,2-c]pyrazoles derivatives that are responsible for checkpoint kinase 1 inhibitory activity. The analyses may be used to design more potent 1,4-dihydroindeno[1,2-c]pyrazoles derivatives and predict their activity prior to synthesis.  相似文献   
48.
Lipases are widely used for a variety of biotechnological applications. Screening these industrial enzymes directly from environmental microorganisms is a more efficient and practical approach than conventional cultivation-dependent methods. Combined with activity-based functional screening, six clones with lipase activity were detected and a gene (termed lipZ01) isolated from a target clone with the highest lipase activity was cloned from an oil-contaminated soil-derived metagenomic library and then sequenced. Gene lipZ01 was expressed in Pichia pastoris GS115 and the molecular weight of the recombinant lipase LipZ01 was estimated by electrophoresis analysis to be approximately 50 kDa. The maximum activity of the purified lipase was 42 U/mL, and the optimum reaction temperature and pH value were 45 °C and 8.0, respectively. The enzyme was highly stable in the temperature range 35–60 °C and under alkaline conditions (pH 7–10). The presence of Ca2+ and Mn2+ ions could significantly enhance the activity of the lipase. The purified lipase preferentially hydrolysed triacylglycerols with acyl chain lengths ≥8 carbon atoms, and the conversion degree of biodiesel production was nearly 92% in a transesterification reaction using olive oil and methanol. Some attractive properties suggested that the recombinant lipase may be valuable in industrial applications.  相似文献   
49.
Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.  相似文献   
50.
The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. l-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO2 assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号