首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   4篇
  2014年   26篇
  2013年   31篇
  2012年   21篇
  2011年   33篇
  2010年   21篇
  2009年   17篇
  2008年   31篇
  2007年   19篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   23篇
  2002年   11篇
  2001年   4篇
  2000年   16篇
  1999年   18篇
  1998年   22篇
  1997年   12篇
  1996年   24篇
  1995年   20篇
  1994年   22篇
  1993年   31篇
  1992年   27篇
  1991年   33篇
  1990年   31篇
  1989年   27篇
  1988年   23篇
  1987年   29篇
  1986年   28篇
  1985年   18篇
  1984年   26篇
  1983年   39篇
  1982年   30篇
  1981年   30篇
  1980年   10篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有838条查询结果,搜索用时 31 毫秒
81.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   
82.
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9′). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.  相似文献   
83.
Neurotransmitters are the compounds which allow the transmission of signals from one neuron to the next across synapses. They are the brain chemicals that communicate information throughout brain and body. Fullerenes are a family of carbonallotropes, molecules composed entirely of carbon, that take the forms of spheres, ellipsoids, and cylinders. Various empty carbon fullerenes (Cn) with different carbon atoms have been obtained and investigated. Topological indices have been successfully used to construct effective and useful mathematical methods to establish clear relationships between structural data and the physical properties of these materials. In this study, the number of carbon atoms in the fullerenes was used as an index to establish a relationship between the structures of neurotransmitters (NTs) acetylcholine (AC) 1, dopamine (DP) 2, serotonin (SE) 3, and epinephrine (EP) 4 as the well-known redox systems and fullerenes Cn (n = 60, 70, 76, 82, and 86) which create [NT].Cn; A-1 to A-5 up to D-1 to D-5. The relationship between the number of carbon atoms and the free energy of electron transfer (ΔGet(n); n = 1–4) is assessed using the Rehm-Weller equation for A-1 to A-5 up to D-1 to D-5 supramolecular [NT].Cn complexes. The calculations are presented for the four reduction potentials (Red.E1 to Red.E4) of fullerenes Cn. The results were used to calculate the four free energy values of electron transfer (ΔGet(1) to ΔGet(4)) of the supramolecular complexes A-1 to A-8 up to D-1 to D-8 for fullerenes C60 to C120. The first to fourth free activation energy values of electron transfer and the maximum wavelength of the electron transfers, ΔG#et(n) and λet (n = 1–4), respectively, were also calculated in this study for A-1 to A-8 up to D-1 to D-8 in accordance with the Marcus theory.  相似文献   
84.
Neuromuscular synaptic transmission depends upon tight packing of acetylcholine receptors (AChRs) into postsynaptic AChR aggregates, but not all postsynaptic AChRs are aggregated. Here we describe a new confocal Fluorescence Resonance Energy Transfer (FRET) assay for semi-quantitative comparison of the degree to which AChRs are aggregated at synapses. During the first month of postnatal life the mouse tibialis anterior muscle showed increases both in the number of postsynaptic AChRs and the efficiency with which AChR was aggregated (by FRET). There was a concurrent two-fold increase in immunofluorescent labeling for the AChR-associated cytoplasmic protein, rapsyn. When 1-month old muscle was denervated, postsynaptic rapsyn immunostaining was reduced, as was the efficiency of AChR aggregation. In vivo electroporation of rapsyn-EGFP into muscle fibers increased postsynaptic rapsyn levels. Those synapses with higher ratios of rapsyn-EGFP to AChR displayed a slower metabolic turnover of AChR. Conversely, the reduction of postsynaptic rapsyn after denervation was accompanied by an acceleration of AChR turnover. Thus, a developmental increase in the amount of rapsyn targeted to the postsynaptic membrane may drive enhanced postsynaptic AChRs aggregation and AChR stability within the postsynaptic membrane.  相似文献   
85.
Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105–400% vs. controls in the presence of 10–6 to 10–4 M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10–6 M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10–8 to 10–6 M) and GFX (10–8 to 10–6 M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.  相似文献   
86.
Studies with environmental levels of various metals typically focus on observable neurological symptoms in newborns and adults. Use of the C2C12 skeletal muscle cell line as a developmental model enabled us to test whether environmental insults prevented myotube formation or the assembly of the postsynaptic component of the neuromuscular synapse. Specifically, we asked whether the inorganic metal mercury interfered with the fusion of myoblasts into myotubes, acetylcholine receptor (AChR) clustering, or the agrin signaling events that precede AChR clustering. C2C12 myotubes grown in culture medium containing 10 M mercuric chloride were morphologically indistinguishable from control myotubes at the light-microscopic level, and myoblasts fused into myotubes normally. However, myotubes pretreated with mercury demonstrated a decreased frequency of AChR clustering induced by agrin and other experimental manipulations. Furthermore, mercury pretreatment decreased the agrin-induced tyrosine phosphorylation of the AChR subunit, thus inhibiting the agrin signal transduction pathway. In contrast, mercury failed to decrease the frequency of spontaneous AChR clustering, suggesting that spontaneous AChR clustering differs from agrin-induced AChR clustering in some significant way.This work was supported in part by Midwestern University  相似文献   
87.
In the present study we investigated a potential mechanism by which high sugar (HS) and high fat (HF) diets could affect acetylcholinesterase (AChE) activity. The treatment with HS and HF diet was done for six months on male and female rats. The results showed decreased hippocampal AChE activity in male and females receiving HS and HF diets (HS 24% and 36%; HF 38% and 32%, males and females, respectively; P < 0.05). The activity in the cerebral cortex was reduced in males (49 and 40%) and females (19 and 17%) (P < 0.05) on HS and HF diets, respectively. In the hypothalamus AChE activity was decreased on HS diet in males (46%) and female (25%) (P < 0.05) and also on HF diet in males (34%) and females (21%) (P < 0.05). However, in the cerebellum no changes in AChE activity were observed. These results indicate that HS and HF diets produced mainly inhibition in acetylcholine degradation. It probably indicates a chronic alteration induced by these diets on the cholinergic system.  相似文献   
88.
The potency (muscle force-generated) of a number of long-chain RFamide neuropeptides was examined in mechanical experiments with the radular-retractor and radular-sac muscles of gastropods Buccinum undatum and Neptunea antiqua. Many of the heptapeptides, octapeptides and the decapeptide LMS were found to induce greater contraction than FMRFamide in both smooth muscles and in both species. RFamide neuropeptides interacted with the neurotransmitter acetylcholine in an additive way and RFamide-induced contractions were inhibited by the neuromodulator serotonin. Pre-treatment with a calcium-free saline completely abolished acetylcholine-induced responses but only partially inhibited RFamide responses in the muscles, suggesting that acetylcholine acts to cause influx of extracellular calcium for contraction. In contrast, RFamide neuropeptides may mobilise intracellular calcium to maintain sustained tonic force in calcium-free conditions. This suggests that an additional involvement of a fast calcium channel may be present in the RFamide responses, since loss of the usual superimposed twitch activity is observed. Force regulation in these muscles appears to result from a complex interaction of RFamide neuropeptides with the primary transmitter acetylcholine and the neuromodulator serotonin.Abbreviations ACh acetylcholine - Ala alanine - Arg arginine - Asn asparagine - Asp aspartic acid - Cys cysteine - FLRFamide Phe-Leu-Arg-Phe-NH2 - FMRFamide Phe-Met-Arg-Phe-NH2 - Gln glutamine - Glu glutamic acid - Gly glycine - His histadine - Ile isoleucine - Leu leucine - LMS leucomyosuppressin - Met methionine - Nle norleucine - Phe phenylalanine - Pro proline - SCPB (small cardioactive peptide B) Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met-NH2 - Ser serine - Val valine  相似文献   
89.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to exhibit aryl acylamidase activities (here called AAA(AChe) and AAA(BChe), respectively), which have been suggested to be involved in developmental and pathological processes. We here have investigated the developmental profiles of both AAA(AChe) and AAA(BChe) activities along with their AChE and BChE activities from embryonic days E3 to hatching (E21) in Triton-extracted homogenates from chicken embryonic brains. AAA(AChe) follows continuously an increase that is typical for AChE expression itself, whereas AAA(BChe) was relatively high before E10 to then become negligible toward hatching. Sucrose gradient centrifugation of both homogenized and immunopurified samples from E6-E18 brains showed that all globular forms (G1, G2, G4) of AChE present AAA(AChe) activity. Interestingly, the ratio of AAA(AChe) to AChE is highest at E6, and here again higher on G1/G2- over the G4-form. Noticeably, the sensitivity of AAA(AChe) toward the specific AChE inhibitor BW284c51 at all stages is higher than that of AChE itself. These data of high ratios of AAA associated at young stages with cholinesterases strongly indicate a role of AAA in early brain development.  相似文献   
90.
Incubation of porcine coronary artery rings and cardiac muscle tissue in Krebs buffer followed by GC/MS analysis of the headspace gas revealed two gases, carbonyl sulfide (COS) and sulfur dioxide (SO(2)). The gases were identified by characteristic ions obtained by electron ionization, and by comparison of the retention time on a chromatographic column (GS GasPro) with standards of these gases. Stimulation of the arterial rings with acetylcholine and calcium ionophore A23187 increased the levels of SO(2) and COS in the vascular tissue. We also provide evidence that SO(2) could originate from disproportionation of a very unstable gas, sulfur monoxide (S=O). We suggest potential origins of these gases and discuss their relevance to endothelium-derived hyperpolarizing factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号