首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   4篇
  2014年   26篇
  2013年   31篇
  2012年   21篇
  2011年   33篇
  2010年   21篇
  2009年   17篇
  2008年   31篇
  2007年   19篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   23篇
  2002年   11篇
  2001年   4篇
  2000年   16篇
  1999年   18篇
  1998年   22篇
  1997年   12篇
  1996年   24篇
  1995年   20篇
  1994年   22篇
  1993年   31篇
  1992年   27篇
  1991年   33篇
  1990年   31篇
  1989年   27篇
  1988年   23篇
  1987年   29篇
  1986年   28篇
  1985年   18篇
  1984年   26篇
  1983年   39篇
  1982年   30篇
  1981年   30篇
  1980年   10篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有838条查询结果,搜索用时 31 毫秒
71.
Slices of rat caudate nuclei were incubated in saline media containing choline, paraoxon, unlabelled glucose, and [1,5-14C] citrate, [1-14C-acetyl]carnitine, [1-14C]acetate, [2-14C]pyruvate, or [U-14C]glucose. The synthesis of acetyl-labelled acetylcholine (ACh) was compared with the total synthesis of ACh. When related to the utilization of unlabelled glucose (responsible for the formation of unlabelled ACh), the utilization of labelled substrates for the synthesis of the acetyl moiety of ACh was found to decrease in the following order: [2-14C]pyruvate greater than [U-14C]glucose greater than [1-14C-acetyl]carnitine greater than [1,5-14C]citrate greater than [1-14C]acetate. The utilization of [1,5-14C]citrate and [1-14C]acetate for the synthesis of [14C]ACh was low, although it was apparent from the formation of 14CO2 and 14C-labelled lipid that the substrates entered the cells and were metabolized. The utilization of [1,5-14C]citrate for the synthesis of [14C]ACh was higher when the incubation was performed in a medium without calcium (with EGTA); that of glucose did not change, whereas the utilization of other substrates for the synthesis of ACh decreased. The results indicate that earlier (indirect) evidence led to an underestimation of acetylcarnitine as a potential source of acetyl groups for the synthesis of ACh in mammalian brian; they do not support (but do not disprove) the view that citrate is the main carrier of acetyl groups from the intramitochondrial acetyl-CoA to the extramitochondrial space in cerebral cholinergic neurons.  相似文献   
72.
During insulin stupor in mice, acetylcholine levels in cerebral cortex, cerebellum. brainstem, striatum, and hippocampus were unchanged from control values despite brain glucose concentrations 3-10% of normal, whereas choline levels rose 2.4-3.6-fold in all five CNS regions. Brain acetylcholine and choline levels did not change during recovery following glucose injection. The data suggest that. in hypoglycemic stupor, (1) overall rates of acetylcholine synthesis and degradation remain balanced within each of the CNS regions studied: (2) the biochemical mechanism that elevates brain choline levels is unlikely to be related only to cholinergic synaptic processes: and (3) brain choline levels need not rise for stupor to occur.  相似文献   
73.
Quinuclidinyl Benzilate Binding in House Fly Heads and Rat Brain   总被引:4,自引:3,他引:1  
Abstract: House fly heads contain a binding site for 3-quinuclidinyl benzilate (QNB) that is quite similar in pharmacology to the muscarinic acetylcholine receptor of vertebrate tissues. The house fly site binds [3H]QNB reversibly with a K d of 260 PM and Bmax of 1 pmol/g of heads from direct binding measurements. The Kd calculated from the ratio of the dissociation rate constant (2 × 10−4 sec−1) to the association rate constant (2.5 × 106 M−1 Sec−1) was 80 pM. The house fly site binds (-)quinuclidinyl benzilate preferentially, as do classic muscarinic receptors. The binding is also sensitive to other muscarinic antagonists and agonists. Nicotinic and other drugs are no more effective on the house fly site than they are on the rat brain muscarinic receptor itself. These binding studies suggest that the house fly QNB binding site is a muscarinic receptor.  相似文献   
74.
Thiamine and Cholinergic Transmission in the Electric Organ of Torpedo   总被引:4,自引:4,他引:0  
The electric organ of Torpedo marmorata was found to contain as much as 120 +/- 24 nmol of thiamine per g of fresh tissue. The vitamin was distributed as nonesterified thiamine (32%), thiamine monophosphate (22%), thiamine diphosphate (8%), and an important proportion of thiamine triphosphate (38%). A high level of thiamine triphosphate was found in synaptosomes isolated from the electric organ. In contrast, the synaptic vesicles did not show any enrichment in thiamine, whereas they contained a marked peak of acetylcholine (ACh) and ATP. Thus thiamine seems to be very abundant in cholinergic nerve terminals; its localization is apparently extravesicular, either in the axoplasm or in association with plasma membrane. When calcium was reduced and magnesium increased in the external medium, the efficiency of transmission was diminished, owing to inhibition of ACh release; in a parallel manner the degree of thiamine phosphorylation was found to increase--this condition is known to modify the repartition of ACh between vesicular and extravesicular compartments. Electrical stimulation, which causes periodic variations of the level of ACh and ATP, also caused significant changes in thiamine esters. In addition, related changes of the vitamin and the transmitter were observed under other conditions, suggesting a functional link between the metabolism of thiamine and that of ACh in cholinergic nerve terminals.  相似文献   
75.
1. The ESR spectra of both phosphatidylcholine and phosphatidylethanolamine spin labels reveal an immobilized lipid component (τR ? 50 ns), in addition to a fluid component (τR ~ 1 ns), in acetylcholine receptorrich membranes prepared from Torpedo marmorata electroplax according to the method of Cohen et al. (Cohen, J.B., Weber, M., Huchet, M. and Changeux, J.P. (1972) FEBS Lett. 26, 43–47). 2. The ESR spectra of the androstanol spin label display a component corresponding to molecules which are immobilized with respect to rotation about the long molecular axis (
), in addition to the fluid lipid bilayer component in which the molecules are rotating rapidly about their long axes (
). This immobilized component is observed throughout the temperature range 2–22°C, at an approximately constant relative intensity of approx. 45% of the total, which is quantitatively the same as previously observed with fatty acid spin labels.  相似文献   
76.
Non-ionic detergents used for the solubilization and purification of acetylcholine receptor from Torpedo californica electroplax may remain tightly bound to this protein. The presence of detergent greatly hinders spectrophotometric and hydrodynamic studies of the receptor protein. β-d-Octylglucopyranoside, however, is found to be effective in solubilizing the receptor from electroplax membranes with minimal interference in the characterization of the protein. The acetylcholine receptor purified from either octylglucopyranoside or Triton X-100-solubilized extracts exhibits identical amino acid compositions, α-Bungarotoxin and (+)-tubocurarine binding parameters, and subunit distributions in SDS-polyacrylamide gels. The use of octylglucopyranoside allows for the assignment of a molar absorptivity for the purified receptor at 280 nm of approx. 530 000 M?1 · cm?1. Additionally, successful reconstitution of octylglucopyranoside-extracted acetylcholine receptor into functional membrane vesicles has recently been achieved (Gonzales-Ros, J.M., Paraschos, A. and Martinez-Carrion, M. (1980) Proc.Natl. Acad. Sci. U.S.A. 77, 1796–1799).Removal of octylglucopyranoside by dialysis does not alter the specific toxin and antagonist binding ability of the receptor or its solubility at low protein concentrations. Sedimentation profiles of the purified acetylcholine receptor in sucrose density gradients reveal several components. Sedimentation coefficients obtained for the slowest sedimenting species agree with previously reported molecular weight values. Additionally, the different sedimenting forms exhibit distinctive behavior in isoelectric focusing gels. Our results suggest that both the concentration and type of detergent greatly influence the physicochemical behavior of the receptor protein.  相似文献   
77.
The release of acetylcholine (Ach) from Torpedo synaptic vesicles has been investigated. Factors have been found which induce Ca+2 dependent Ach release from the synaptic vesicles. In the absence of these factors, the vesicles are not affected by Ca+2. Addition of a soluble factor to the vesicles induces a Ca+2-dependent release of their Ach. This secretion is enhanced by a non-vesicular membranous component which, by itself, does not induce the Ca+2-dependent release. These results demonstrate that vesicular Ach release may be studied in vitro and thus will enable the study, at the molecular level, of the biochemical events underlying neurotransmission.  相似文献   
78.
Propionylcholine, a novel analogue of acetylcholine, was identified in green plants by gas chromatography/mass spectrometry. Propionylcholine was found in the leaves of the following species previously shown to contain acetylcholine and cholinesterase activity: Codiaeum variegatum Blume, Phaseolus aureus Roxb. cv. Berken, Plantago rugelli Decne., Populus grandidentata Michx., and Betula pendula Roth. The quantities of propionylcholine ranged from a high of 2.3 nmol (g fresh weight)−1 in C. variegatum to a low of 0.11 nmol (g fresh weight)−1 in P. rugelli . These amounts represented 6 to 8% of the levels of acetylcholine. In contrast to animal tissues which rarely synthesize propionylcholine, this compound was found in all species examined which represented five families of flowering plants.  相似文献   
79.
The role of acetylcholine and specific nicotinic receptors in sensorimotor gating and higher cognitive function has been controversial. Here, we used a commercially available mouse with a null mutation in the Chrna7tm1Bay gene [α7‐nicotinic acetylcholine receptor (nAChR) knockout (KO) mouse] in order to assess the role of the α7‐nAChR in sensorimotor gating and spatial learning. We examined prepulse inhibition (PPI) of startle and nicotine‐induced enhancement of PPI. We also tested short‐ and long‐term habituation of the startle response as well as of locomotor behaviour in order to differentiate the role of this receptor in the habituation of evoked behaviour (startle) vs. motivated behaviour (locomotion). To address higher cognition, mice were also tested in a spatial learning task. Our results showed a mild but consistent PPI deficit in α7‐nAChR KO mice. Furthermore, they did not show nicotine‐induced enhancement of startle or PPI. Short‐ and long‐term habituation was normal in KO mice for both types of behaviours, evoked or motivated, and they also showed normal learning and memory in the Barnes maze. Thorough analysis of the behavioural data indicated a slightly higher degree of anxiety in α7‐nAChR KO mice; however, this could only be partially confirmed in an elevated plus maze test. In summary, our data suggest that α7‐nAChRs play a minor role in PPI, but seem to mediate nicotine‐induced PPI enhancement. We found no evidence to suggest that they are important for habituation or spatial learning .  相似文献   
80.
The aim of this study was to investigate whether time‐dependent variations in the relaxant effect of acetylcholine, an endothelium‐dependent vasorelaxant via muscarinic receptors, and isoprenaline, a nonselective β‐adrenoceptor agonist in rat aorta, are influenced by streptozotocin (STZ)‐induced experimental diabetes. Adult male rats were divided randomly into two groups: control and STZ‐induced (STZ, 55 mg/kg, intraperitoneal) diabetes. The animals were synchronized to a 12∶12 h light‐dark cycle (lights on 08∶00 h) and sacrificed at six different times of day (1, 5, 9, 13, 17, and 21 hours after lights on; HALO) eight weeks after STZ injection. The in vitro responsiveness of thoracic aorta rings obtained from control and diabetic rats to acetylcholine (10?9–10?5 M) and isoprenaline (10?10–10?3 M) was determined in six different times. EC50 (the concentration inducing half of the maximum response) values and maximum responses were calculated from cumulative concentration‐response curves of the agonists and were analyzed with respect to time and STZ treatment. Treatment, time, and interactions between treatment and time were tested by two‐way analysis of variance (ANOVA). To analyze differences due to biological time, one‐way ANOVA was used. STZ treatment did not significantly change EC50 values or maximum responses for both agonists. There were statistically significant time‐dependent variations in the EC50 values for isoprenaline and maximum responses for both acetylcholine and isoprenaline in control groups by one‐way ANOVA, but significant time‐dependent variations disappeared in the aortas isolated from STZ‐induced diabetic rats. The vasodilator responses to acetylcholine and isoprenaline failed to show any significant interaction (treatment×time of study) between STZ treatment and time of sacrifice in both EC50 values and maximum responses by two‐way ANOVA. These results indicate there is a basic temporal pattern in the responses to acetylcholine and isoprenaline in rat aorta which continues in diabetes. It is shown for the first time that experimental diabetes does not change the 24 h pattern of responses to acetylcholine and isoprenaline, and that time‐dependent variations in the responses to these agonists disappear in diabetic animals. Although further studies are required to define the underlying mechanism(s) of these findings, results suggest that experimental diabetes can modify the time‐dependent vasorelaxant responses of rat aorta. This may help to understand the circadian rhythms in cardiovascular physiology and pathology or in drug effects in diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号