首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5703篇
  免费   348篇
  国内免费   179篇
  2023年   72篇
  2022年   67篇
  2021年   131篇
  2020年   144篇
  2019年   216篇
  2018年   209篇
  2017年   145篇
  2016年   129篇
  2015年   196篇
  2014年   336篇
  2013年   419篇
  2012年   241篇
  2011年   272篇
  2010年   238篇
  2009年   265篇
  2008年   299篇
  2007年   330篇
  2006年   315篇
  2005年   248篇
  2004年   224篇
  2003年   205篇
  2002年   184篇
  2001年   135篇
  2000年   121篇
  1999年   117篇
  1998年   118篇
  1997年   89篇
  1996年   96篇
  1995年   71篇
  1994年   73篇
  1993年   74篇
  1992年   59篇
  1991年   68篇
  1990年   43篇
  1989年   33篇
  1988年   34篇
  1987年   35篇
  1986年   22篇
  1985年   31篇
  1984年   20篇
  1983年   15篇
  1982年   15篇
  1981年   14篇
  1980年   17篇
  1979年   9篇
  1978年   5篇
  1976年   7篇
  1974年   4篇
  1973年   5篇
  1972年   4篇
排序方式: 共有6230条查询结果,搜索用时 31 毫秒
991.
We have examined the composition and ultrastructure of the nuclear periphery during in vitro myogenesis of the rat myoblast cell line, L6E9. Immunofluorescence labelling and immunoblotting showed that lamins A/C and B were all present in undifferentiated cells, but that they increased significantly before extensive cell fusion had occurred, with lamins A/C increasing proportionately more. Electron microscopic observations were consistent with these results, showing an increase in the prominence of the lamina during differentiation. On the other hand, immunofluorescence labelling suggested that the P1 antigen began to disappear from the nuclear periphery as the cells were fusing, after the increase in lamin quantity, and was no longer detectable in multinucleated cells. Unexpectedly, however, P1 was readily detected in isolated nuclei, whether prepared from myoblast or differentiated cultures, as well as in both myoblast and myotube nuclear matrices. It appears probable, therefore, that the fading of P1 labelling is due to masking of the epitope by a soluble factor recruited to the nuclear periphery as cells differentiate. These data, together with evidence that the genome is substantially rearranged during L6E9 myogenesis [Chaly and Munro, 1996], suggest that L6E9 cells are a useful model system in which to study the interrelationship of nuclear envelope organization, chromatin spatial order, and nuclear function. © 1996 Wiley-Liss, Inc.  相似文献   
992.
Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with α-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis. © 1996 Wiley-Liss, Inc.  相似文献   
993.
Hue Sun Chan  Ken A. Dill 《Proteins》1996,24(3):335-344
Proteins fold to unique compact native structures. Perhaps other polymers could be designed to fold in similar ways. The chemical nature of the monomer “alphabet” determines the “energy matrix” of monomer interactions—which defines the folding code, the relationship between sequence and structure. We study two properties of energy matrices using two-dimensional lattice models: uniqueness, the number of sequences that fold to only one structure, and encodability, the number of folds that are unique lowest-energy structures of certain monomer sequences. For the simplest model folding code, involving binary sequences of H (hydrophobic) and P (polar) monomers, only a small fraction of sequences fold uniquely, and not all structures can be encoded. Adding strong repulsive interactions results in a folding code with more sequences folding uniquely and more designable folds. Some theories suggest that the quality of a folding code depends only on the number of letters in the monomer alphabet, but we find that the energy matrix itself can be at least as important as the size of the alphabet. Certain multi-letter codes, including some with 20 letters, may be less physical or protein-like than codes with smaller numbers of letters because they neglect correlations among inter-residue interactions, treat only maximally compact conformations, or add arbitrary energies to the energy matrix.  相似文献   
994.
995.
996.
997.
998.
999.
Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory–secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory–secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory–secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory–secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory–secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory–secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号