首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   56篇
  国内免费   6篇
  2024年   1篇
  2023年   18篇
  2022年   13篇
  2021年   46篇
  2020年   50篇
  2019年   69篇
  2018年   70篇
  2017年   33篇
  2016年   33篇
  2015年   52篇
  2014年   90篇
  2013年   89篇
  2012年   67篇
  2011年   110篇
  2010年   63篇
  2009年   28篇
  2008年   33篇
  2007年   24篇
  2006年   18篇
  2005年   6篇
  2004年   9篇
  2002年   1篇
排序方式: 共有923条查询结果,搜索用时 15 毫秒
871.
In our previous report, Solidago virgaurea var. gigantea (SV) extract was shown to exhibit anti-adipogenesis activity in 3T3-L1 adipocyte cells. In this study, anti-obesity activity of SV extract was investigated in in vivo animal model. Sprague-Dawley (SD) rats were administered with high-fat diet, and the effect of SV extract was tested. SD rats were treated orally with SV extract for eight weeks, and their body weight was measured every week. The oral treatment of SV extract decreased body weight, fat tissue weight, blood low-density lipoprotein-cholesterol level, and blood triglycerides level. The p-AMP-activated protein kinase (AMPK) (AMP kinase) protein level in the fat tissue of the SV extract-treated SD rats increased. The protein levels of AMPK-downstream proteins, c-AMP response element binding protein and acetyl-CoA carboxylase, fatty acid synthase, and FABP4 decreased, indicating that SV extract-activated AMPK induced inhibition of adipogenesis and lipid biosynthesis in fat tissue. 1H-NMR measurements of the lipid soluble liver extract showed a decrease in the lipid metabolites, indicating that SV extract-activated fatty acid oxidation in the liver. Overall, our results suggest that orally treated SV extract has excellent anti-obesity effect against HFD-induced obesity of SD rat.  相似文献   
872.
De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.  相似文献   
873.
The purpose of this study is to investigate the effects of euphorbiasteroid, a component of Euphorbia lathyris L., on adipogenesis of 3T3‐L1 pre‐adipocytes and its underlying mechanisms. Euphorbiasteroid decreased differentiation of 3T3‐L1 cells via reduction of intracellular triglyceride (TG) accumulation at concentrations of 25 and 50 μM. In addition, euphorbiasteroid altered the key regulator proteins of adipogenesis in the early stage of adipocyte differentiation by increasing the phosphorylation of AMP‐activated protein kinase (AMPK) and acetyl‐CoA carboxylase. Subsequently, levels of adipogenic proteins, including fatty acid synthase, peroxisome proliferator‐activated receptor‐γ and CCAAT/enhancer‐binding protein α, were decreased by euphorbiasteroid treatment at the late stage of adipocyte differentiation. The anti‐adipogenic effect of euphorbiasteroid may be derived from inhibition of early stage of adipocyte differentiation. Taken together, euphorbiasteroid inhibits adipogenesis of 3T3‐L1 cells through activation of the AMPK pathway. Therefore, euphorbiasteroid and its source plant, E. lathyris L., could possibly be one of the fascinating anti‐obesity agent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
874.
875.
Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.  相似文献   
876.
877.
878.
879.
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5′-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1−/−). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1−/− islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号