首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   0篇
  国内免费   5篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   22篇
  2013年   9篇
  2012年   17篇
  2011年   22篇
  2010年   22篇
  2009年   8篇
  2008年   2篇
  2007年   2篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1990年   1篇
  1988年   4篇
  1985年   2篇
  1983年   2篇
  1979年   1篇
排序方式: 共有185条查询结果,搜索用时 218 毫秒
41.
The scaffolding protein Yotiao is a member of a large family of protein A-kinase anchoring proteins with important roles in the organization of spatial and temporal signaling. In heart, Yotiao directly associates with the slow outward potassium ion current (I(Ks)) and recruits both PKA and PP1 to regulate I(Ks) phosphorylation and gating. Human mutations that disrupt I(Ks)-Yotiao interaction result in reduced PKA-dependent phosphorylation of the I(Ks) subunit KCNQ1 and inhibition of sympathetic stimulation of I(Ks), which can give rise to long-QT syndrome. We have previously identified a subset of adenylyl cyclase (AC) isoforms that interact with Yotiao, including AC1-3 and AC9, but surprisingly, this group did not include the major cardiac isoforms AC5 and AC6. We now show that either AC2 or AC9 can associate with KCNQ1 in a complex mediated by Yotiao. In transgenic mouse heart expressing KCNQ1-KCNE1, AC activity was specifically associated with the I(Ks)-Yotiao complex and could be disrupted by addition of the AC9 N terminus. A survey of all AC isoforms by RT-PCR indicated expression of AC4-6 and AC9 in adult mouse cardiac myocytes. Of these, the only Yotiao-interacting isoform was AC9. Furthermore, the endogenous I(Ks)-Yotiao complex from guinea pig also contained AC9. Finally, AC9 association with the KCNQ1-Yotiao complex sensitized PKA phosphorylation of KCNQ1 to β-adrenergic stimulation. Thus, in heart, Yotiao brings together PKA, PP1, PDE4D3, AC9, and the I(Ks) channel to achieve localized temporal regulation of β-adrenergic stimulation.  相似文献   
42.
Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.  相似文献   
43.
Higher order chromatin degradation (HOCD) is a stepwise dismantling of the genome through the excision of chromatin loops and their oligomers at matrix attachment regions (MARs) during the early stages of programmed cell death. Although HOCD ultimately leads to the inactivation of the genome and cell death, a partial HOCD in cells receiving sublethal signals may result in the loss of genetic stability leading to neoplasia, degeneration, and aging. The present study was undertaken to determine the role of protein poly(ADP-ribosyl)ation in HOCD. Nuclei isolated from rat glioma C6 cells were able to carry poly(ADP-ribosyl)ation as assessed by the incorporation of 32P-NAD+ into TCA-insoluble fraction. Under the same experimental conditions, millimolar NAD+ induced rapid HOCD in nuclei. However, while poly(ADP-ribosyl)ation was totally abrogated by specific inhibitor, benzamide, NAD+-induced HOCD was unaffected. Benzamide also failed to inhibit HOCD induced by H2O2 exposure in intact cells. These results indicate that HOCD is not mediated through chromatin poly(ADP-ribosyl)ation, and that NAD+ activates MAR-associated endonuclease or facilitates the access of the enzyme to DNA by other mechanisms. Furthermore, other nucleotides including NADP+, ATP, UTP, GTP, and CTP were also found to induce HOCD in isolated nuclei indicating that HOCD is controlled by nucleotide-related ligands.  相似文献   
44.
ADP-ribosyl cyclases (ADPRCs) are present from lower Metazoa to mammals and synthesize the Ca2+-active (di)nucleotides cyclic ADP-ribose (cADPR), NAADP+, and ADP-ribose (ADPR), involved in the regulation of important cellular functions. NAADP+ can be synthesized by ADPRCs from NADP+ through a base-exchange reaction, which substitutes nicotinamide for nicotinic acid (NA). Here we demonstrate that ADPRCs from both lower and higher Metazoa (including human CD38) can also synthesize NAADP+ starting from 2'-phospho-cyclic ADP-ribose (cADPRP) and NA. Comparison, on the two substrates cADPRP and NADP+, of the relative rates of the reactions introducing NA and hydrolyzing/cyclizing the substrate, respectively, indicates that with all ADPRCs tested cADPRP is preferentially transformed into NAADP+, while NADP+ is preferentially cyclized or hydrolyzed to cADPRP/2'-phospho-ADP-ribose. cADPRP was detectable in retinoic acid-differentiated, CD38+ HL-60 cells, but not in undifferentiated, CD38- cells. These results suggest that cADPRP may be a NAADP+ precursor in ADPRC+ cells.  相似文献   
45.
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.  相似文献   
46.
DEK protein is an ubiquitous phosphorylated nuclear protein. Specific binding of DEK to DNA could change the topology of DNA and then affect the gene activity of the underlying DNA sequences. It is speculated that there might be some potential relationship between the stress reaction of cells and DEK proteins. The phosphorylation status of DEK protein is altered during death-receptor-mediated cell apoptosis. Both phosphorylation and poly(ADP-ribosyl)ation could promote the release of DEK from apoptotic nuclei to extracellular environment, and in this case DEK becomes a potential autoantigen of some autoimmune diseases. The available evidence powerfully suggests that DEK protein is closely relevant to apoptosis. The overexpression of DEK protein has dual function in cell apoptosis, in terms of inhibiting or triggering cell apoptosis. Contributed equally to this work Supported by the Science and Technology Foundation of Beijing Jiaotong University (Grant Nos. 2006RC035 and 2007XM047).  相似文献   
47.
Rapid non-genomic effects of 17β-estradiol, the principal circulating estrogen, have been observed in a wide variety of cell types. Here we investigate rapid signaling effects of 17β-estradiol in rat hepatocytes. We show that, above a threshold concentration of 1 nm, 17β-estradiol, but not 17α-estradiol, stimulates particulate guanylyl cyclase to elevate cGMP, which through activation and plasma membrane recruitment of protein kinase G isoform Iα, stimulates plasma membrane Ca2+-ATPase-mediated Ca2+ efflux from rat hepatocytes. These effects are extremely rapid in onset and are mimicked by a membrane-impermeant 17β-estradiol-BSA conjugate, suggesting that 17β-estradiol acts at the extracellular face of the plasma membrane. We also show that 17β-estradiol binds specifically to the intact hepatocyte plasma membrane through an interaction that is competed by an excess of atrial natriuretic peptide but also shows many similarities to the pharmacological characteristics of the putative γ-adrenergic receptor. We, therefore, propose that the observed rapid signaling effects of 17β-estradiol are mediated either through the guanylyl cyclase A receptor for atrial natriuretic peptide or through the γ-adrenergic receptor, which is either itself a transmembrane guanylyl cyclase or activates a transmembrane guanylyl cyclase through cross-talk signaling.  相似文献   
48.
Cyclic AMP acting on protein kinase A controls sporulation and encystation in social and solitary amoebas. In Dictyostelium discoideum, adenylate cyclase R (ACR), is essential for spore encapsulation. In addition to its cyclase (AC) domain, ACR harbors seven transmembrane helices, a histidine kinase domain, and two receiver domains. We investigated the role of these domains in the regulation of AC activity. Expression of an ACR-YFP fusion protein in acr(-) cells rescued their sporulation defective phenotype and revealed that ACR is associated with the nuclear envelope and endoplasmic reticulum. Loss of the transmembrane helices (ΔTM) caused a 60% reduction of AC activity, but ΔTM-ACR still rescued the acr(-) phenotype. The isolated AC domain was properly expressed but inactive. Mutation of three essential ATP-binding residues in the histidine kinase domain did not affect the AC activity or phenotypic rescue. Mutation of the essential phosphoryl-accepting aspartate in receivers 1, 2, or both had only modest effects on AC activity and did not affect phenotypic rescue, indicating that AC activity is not critically regulated by phosphorelay. Remarkably, the dimerizing histidine phosphoacceptor subdomain, which in ACR lacks the canonical histidine for autophosphorylation, was essential for AC activity. Transformation of wild-type cells with an ACR allele (ΔCRA) that is truncated after this domain inhibited AC activity of endogenous ACR and replicated the acr(-) phenotype. Combined with the observation that the isolated AC domain was inactive, the dominant-negative effect of ΔCRA strongly suggests that the defunct phosphoacceptor domain acquired a novel role in enforcing dimerization of the AC domain.  相似文献   
49.
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.  相似文献   
50.
Poly(ADP-ribose) glycohydrolase (PARG) is the only protein known to catalyze hydrolysis of ADP-ribose (ADPR) polymers to free ADP-ribose. While numerous genes encode different poly(ADP-ribose) polymerases (PARPs) that all synthesize ADP-ribose polymer, only a single gene coding for PARG has been detected in mammalian cells. Here, we describe two splice variants of human PARG mRNA, which lead to expression of PARG isoforms of 102 kDa (hPARG102) and 99 kDa (hPARG99) in addition to the full-length PARG protein (hPARG111). These splice variants differ from hPARG111 by the lack of exon 1 (hPARG102) or exons 1 and 2 (hPARG99). They are generated by the utilization of ambiguous splice donor sites in the PARG gene 5' untranslated region. The hPARG111 isoform localizes to the nucleus, whereas hPARG102 and hPARG99 are cytoplasmic proteins. The nuclear targeting of hPARG111 is due to a nuclear localization signal (NLS) in exon 1 that was mapped to the amino acids (aa) (10)CTKRPRW(16). Immunocytochemistry, immunoblotting, and PARG enzyme activity measurements show that the cytoplasmic isoforms of PARG account for most of the PARG activity in cells in the absence and presence of genotoxic stress. The predominantly cytoplasmic location of cellular PARG is intriguing as most known cellular PARPs have a nuclear localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号