首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56255篇
  免费   4298篇
  国内免费   1752篇
  2023年   760篇
  2022年   842篇
  2021年   1473篇
  2020年   1841篇
  2019年   2458篇
  2018年   2145篇
  2017年   1526篇
  2016年   1475篇
  2015年   1638篇
  2014年   3153篇
  2013年   3916篇
  2012年   2406篇
  2011年   3195篇
  2010年   2419篇
  2009年   2748篇
  2008年   2956篇
  2007年   2872篇
  2006年   2458篇
  2005年   2221篇
  2004年   1995篇
  2003年   1708篇
  2002年   1475篇
  2001年   1018篇
  2000年   854篇
  1999年   895篇
  1998年   819篇
  1997年   727篇
  1996年   696篇
  1995年   651篇
  1994年   648篇
  1993年   522篇
  1992年   502篇
  1991年   441篇
  1990年   337篇
  1989年   335篇
  1988年   271篇
  1987年   285篇
  1986年   235篇
  1985年   461篇
  1984年   756篇
  1983年   606篇
  1982年   613篇
  1981年   485篇
  1980年   457篇
  1979年   375篇
  1978年   291篇
  1977年   270篇
  1976年   255篇
  1975年   224篇
  1973年   197篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Increased stability at alkaline pH should be a valuable attribute for the utilization of penicillin acylase in bioreactors employed to convert penicillins into 6-aminopenicillanic acid, a precursor of semisynthetic penicillins. In these systems, base is added for pH control, which results in local alkaline conditions that promote enzyme inactivation. Hydrolysis and synthesis reactions are also pH dependent. Here, we report work in which the gene coding for Escherichia coli penicillin acylase was subjected to oligonucleotide-directed random mutagenesis at regions coding for amino acids predicted to be at the surface of the enzyme. The resulting mutant library, cloned in E. coli, was screened by a filter paper assay of the colonies for the presence of penicillin acylase activity with enhanced stability at alkaline pH. Characterization of one of the selected clones revealed the presence of a mutation, Trp431-Arg, which would presumably alter the surface charge of the protein. In vitro experiments demonstrated a near twofold increase in the half-life of the mutant enzyme when stored at pH 8.5 as compared with the wild-type enzyme, with a comparable specific activity at several pH values. In general, the mutant displayed increased stability toward the basic side in the pH-stability profile. (c) 1995 John Wiley & Sons, Inc.  相似文献   
952.
Crosslinked polystyrene resins containing a low level of either basic or acidic groups were used for supports of alpha-chymotrypsin (CT), which catalyzed the transesterification of N-acetyl-L-phenylalanine ethyl ester (AcPheOEt) with propanol in toluene. With a minimal amount of water, CT was sorbed to the resins, basic or acidic groups of which were partly or fully neutralized by several soluble acids or bases. With an increasing degree of neutralization of basic resins by free acids, the rate of disappearance of AcPheOEt was decreased, whereas the by-product formation of AcPheOH, due to hydrolysis, was considerably suppressed, compared with the ester-exchange product, AcPheOPr. The pK(a) value of the neutralizing acid was also important for both CT activity and reaction selectivity. AcPheOPr was selectively produced at a certain range of pK(a) values. On the other hand, the neutralization of acidic resins with free amines enhanced the CT activity but a strong base promoted the formation of hydrolysis product. (c) 1995 John Wiley & Sons, Inc.  相似文献   
953.
Mutant rat trypsin Asp189Ser was prepared and complexed with highly purified human α1-proteinase inhibitor. The complex formed was purified to homogeneity and studied by N-terminal amino acid sequence analysis and limited proteolysis with bovine trypsin. As compared to uncomplexed mutant trypsin, the mutant enzyme complexed with α1-proteinase inhibitor showed a highly increased susceptibility to enzymatic digestion. The peptide bond selectively attacked by bovine trypsin was identified as the Arg117-Val118 one of trypsin. The structural and mechanistic relevance of this observation to serine proteinase-substrate and serine proteinase-serpin reactions are discussed.  相似文献   
954.
Abstract: Hypoxia is known to disturb neuronal signal transmission at the synapse. Presynaptically, hypoxia is reported to suppress the release of neurotransmitters, but its postsynaptic effects, especially on the function of neurotransmitter receptors, have not yet been elucidated. To clarify the postsynaptic effects, we used cultured bovine adrenal chromaffin cells as a model of postsynaptic neurons and examined specific binding of l -[3H]nicotine (an agonist for nicotinic acetylcholine receptors: nAChRs) and 22Na+ flux under control and hypoxic conditions. Experiments were performed in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). Scatchard analysis of the specific binding to the cells revealed that the KD under hypoxic conditions was twice as large as that under control conditions, whereas the B max was unchanged. When the specific [3H]nicotine binding was kinetically analyzed, the association constant ( k 1) but not the dissociation constant ( k −1) was decreased to 40% of the control value by hypoxia. When the binding assay was performed using the membrane fraction, these changes were not observed. Nicotine-evoked 22Na+ flux into the cells was suppressed by hypoxia. In contrast, specific [3H]quinuclidinyl benzilate binding to the intact cells was unaffected by hypoxia. These results demonstrate that hypoxia specifically suppresses the function of nAChRs (and hence, neuronal signal transmission through nAChRs), primarily by acting intracellularly.  相似文献   
955.
    
Denaturation ofBacillus thuringiensis CryIIIA-endotoxin—an insecticidal protein, active againstColeoptera larvae—in concentrated guanidine hydrochloride solutions was pursued by fluorescence and circular dichroism spectroscopy and limited proteolysis. It was found that the protein consists of two fragments that differ by their stability to denaturation by guanidine hydrochloride atpH 3. The less stable fragment corresponds to the N-terminal-helical domain limited by Leu-279; the more stable one starts with Ile-280, contains about 330 amino acid residues, and corresponds to the molecule C-terminal moiety that consist of its two-structural domains forming a superdomain.Abbreviations BT Bacillus thuringiensis - Gdn-HCl guanidine hydrochloride - PAGE electrophoresis in polyacrylamide gel - SDS sodium dodecylsulfate - CD circular dichroism  相似文献   
956.
Previously, tau protein kinase I/glycogen synthase kinase-3/kinase FA(TPKI/GSK-3/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3//FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.Abbreviations FA the activating factor of type 1 protein phosphatase - GSK-3 glycogen synthase kinase-3 - TPKI tau protein kinase I - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - PHF paired helical filaments - HPLC high-performance liquid chromatography  相似文献   
957.
A number of N- and C-terminal deletion and point mutants of bovine -1,4 galactosyltransferase (-1,4GT) were expressed inE. coli to determine the binding regions of the enzyme that interact withN-acetylglucosamine (NAG) and UDP-galactose. The N-terminal truncated forms of the enzyme between residues 1–129, do not show any significant difference in the apparentK ms toward NAG or linear oligosaccharide acceptors e.g. for chitobiose and chitotriose, or for the nucleotide donor UDP-galactose. Deletion or mutation of Cys 134 results in the loss of enzymatic activity, but does not affect the binding properties of the protein either to NAG- or UDP-agarose. From these columns the protein can be eluted with 15mm NAG and 50mm EDTA, like the enzymatically active protein, TL-GT129, that contains residues 130–402 of bovine -1,4GT. Also the N-terminus fragment, TL-GT129NAG, that contains residues 130–257 of the -1,4GT, binds to, and elutes with 15mm NAG and 50mm EDTA from the NAG-agarose column as efficiently as the enzymatically active TL-GT129. Unlike TL-GT129, the TL-GT129NAG binds to UDP-columns less efficiently and can be eluted from the column with only 15mm NAG. The C-terminus fragment GT-257UDP, containing residues 258–402 of -1,4GT, binds tightly to both NAG- and UDP-agarose columns. A small fraction, 5–10% of the bound protein, can be eluted from the UDP-agarose column with 50mm EDTA alone. The results show that the binding behaviour of N- and C-terminal fragments of -1,4GT towards the NAG- and UDP-agarose columns differ, the former binds preferentially to NAG-columns, while the latter binds to UDP-agarose columns via Mn2+.  相似文献   
958.
A 1-3 galactosyltransferase (GalT-3; UDP-Gal; GM2 1-3galactosyltransferase) was purified over 5100-fold from 19-day-old embryonic chicken brain homogenate employing detergent solubilization, -lactalbumin Sepharose, Q-Sepharose, UDP-hexanolamine Sepharose, and GalNAc1-4Gal-Synsorb column chromatography. The purified enzyme was resolved into two bands on reducing gels with apparent molecular weights of 62 kDa and 65 kDa, respectively. GalT-3 activity was also localized in the same regions by activity gel analysis and sucrose-density gradient centrifugation of a detergent-solubilized extract of 19-day-old embryonic chicken brain. Purified GalT-3 exhibited apparentK mS of 33 µm, 22 µm and 14.4mM with respect to the substrates GM2, UDP-galactose, and MnCl2, respectively. Substrate specificity studies with the purified enzyme and a variety of glycosphingolipids, glycoproteins, and synthetic substrates revealed that the enzyme was highly specific only for the glycosphingolipid acceptors, GM2 and GgOse3Cer (asialo-GM2). Ovine-asialo-agalacto submaxillary mucin inhibited the transfer of galactose to GM2 but did not act as an acceptor in the range of concentrations tested. Polyclonal antibodies raised against purified GalT-3 inhibited GalT-3 activityin vitro and Western-immunoblot analysis of purified GalT-3 showed immunopositive bands at 62 and 65 kDa.Abbreviations CNS central nervous system - GM1 monosialotetraosylganglioside, Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GM2 monosialotriaosylganglioside, GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer - DSS detergent solubilized supernatant - ECB embryonic chicken brain - TBS Tris-buffered saline  相似文献   
959.
Human and murine blood cells treated with ZnCl2 and bis(sulfosuccinimidyl)suberate (BS3) (a cross linking agent) undergo band 3 clustering and binding of hemoglobin to red blood cell membrane proteins. These clusters induce autologous IgG binding and complement fixation, thus favouring the phagocytosis of ZnCl2/BS3 treated cells by macrophages. The extension of red blood cell opsonization can be easily modulated by changing the ZnCl2 concentration in the 0.1–1.0 mM range thus providing an effective way to affect blood cell recognition by macrophages. In fact, murine erythrocytes treated with increasing ZnCl2 concentrations have proportionally reduced survivals when reinjected into the animal. Furthermore, the organ sequestration of ZnCl2/BS3 treated cells strongly resembles the typical distribution of the senescent cells. Since the ZnCl2/BS3 treatment can also be performed on red blood cells loaded with drugs or other substances, this procedure is an effective drug-targeting system to be used for the delivery of molecules to peritoneal, liver and spleen macrophages.  相似文献   
960.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号