首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7252篇
  免费   360篇
  国内免费   159篇
  2023年   66篇
  2022年   81篇
  2021年   192篇
  2020年   172篇
  2019年   210篇
  2018年   224篇
  2017年   150篇
  2016年   144篇
  2015年   185篇
  2014年   390篇
  2013年   482篇
  2012年   259篇
  2011年   368篇
  2010年   287篇
  2009年   404篇
  2008年   370篇
  2007年   389篇
  2006年   311篇
  2005年   359篇
  2004年   250篇
  2003年   250篇
  2002年   224篇
  2001年   123篇
  2000年   120篇
  1999年   128篇
  1998年   135篇
  1997年   100篇
  1996年   88篇
  1995年   105篇
  1994年   91篇
  1993年   77篇
  1992年   93篇
  1991年   55篇
  1990年   52篇
  1989年   51篇
  1988年   51篇
  1987年   48篇
  1986年   29篇
  1985年   54篇
  1984年   115篇
  1983年   78篇
  1982年   62篇
  1981年   65篇
  1980年   68篇
  1979年   62篇
  1978年   34篇
  1977年   30篇
  1976年   26篇
  1975年   19篇
  1974年   20篇
排序方式: 共有7771条查询结果,搜索用时 328 毫秒
991.
Abstract.— The causes of speciation in the sea are rarely obvious, because geographical barriers are not conspicuous and dispersal abilities or marine organisms, particularly those of species with planktonic larvae, are hard to determine. The phylogenetic relations of species in cosmopolitan genera can provide information on the likely mode of their formation. We reconstructed the phylogeny of the pantropical and subtropical sea urchin genus Diadema, using sequences of mitochondrial DNA from 482 individuals collected around the world, to determine the efficacy of barriers to gene flow and to ascertain the history of possible dispersal and vicariance events that led to speciation. We also compared 22 isozyme loci between all described species except D. palmeri. The mitochondrial DNA data show that the two deepest lineages are found in the Indian and West Pacific Oceans. (Indo‐Pacific) Diadema setosum diverged first from all other extant Diadema, probably during the initiation of wide fluctuations in global sea levels in the Miocene. The D. setosum clade then split 3‐5 million years ago into two clades, one found around the Arabian Peninsula and the other in the Indo‐West Pacific. On the lineage leading to the other species of Diadema, the deepest branch is composed of D. palmeri, apparently separated when the climate of New Zealand became colder and other tropical echinoids at these islands went extinct. The next lineage to separate is composed of a currently unrecognized species of Diadema that is found at Japan and the Marshall Islands. Diadema mexicanum in the eastern Pacific separated next, whereas D. paucispinum, D. savignyi, and D. antillarum from the western and central Atlantic, and (as a separate clade) D. antillarum from the eastern Atlantic form a shallow polytomy. Apparently, Indo‐Pacific populations of Diadema maintained genetic contact with Atlantic ones around the southern tip of Africa for some time after the Isthmus of Panama was complete. Diadema paucispinum contains two lineages: D. paucispinum sensu stricto is not limited to Hawaii as previously thought, but extends to Easter Island, Pitcairn, and Okinawa; A second mitochondrial clade of D. paucispinum extends from East Africa and Arabia to the Philippines and New Guinea. A more recent separation between West Indian Ocean and West Pacific populations was detected in D. setosum. Presumably, these genetic discontinuities are the result of water flow restrictions in the straits between northern Australia and Southeast Asia during Pleistocene episodes of low sea level. Diadema savignyi is characterized by high rates of gene flow from Kiribati in the central Pacific all the way to the East African Coast. In the Atlantic, there is a biogeographic barrier between the Caribbean and Brazil, possibly caused by fresh water outflow from the Amazon and the Orinoco Rivers. Diadema antillarum populations of the central Atlantic islands of Ascension and St. Helena are genetically isolated and phylogenetically derived from Brazil. Except for its genetic separation by the mid‐Atlantic barrier, Diadema seems to have maintained connections through potential barriers to dispersal (including the Isthmus of Panama) more recently than did Eucidaris or Echinometra, two other genera of sea urchins in which phylogeography has been studied. Nevertheless, the mtDNA phylogeography of Diadema includes all stages expected from models of allopatric differentiation. There are anciently separated clades that now overlap in their geographic distribution, clades isolated in the periphery of the genus range that have remained in the periphery, clades that may have been isolated in the periphery but have since spread towards the center, closely related clades on either side of an existing barrier, and closely related monophyletic entities on either side of an historical barrier that have crossed the former barrier line, but have not attained genetic equilibrium. Except for D. paucispinum and D. savignyi, in which known hybridization may have lodged mtDNA from one species into the genome of the other, closely related clades are always allopatric, and only distantly related ones overlap geographically. Thus, the phylogenetic history and distribution of extant species of Diadema is by and large consistent with allopatric speciation.  相似文献   
992.
We examined the genetic variability in the pig–human tapeworm, Taenia solium, by sequencing the genes for cytochrome oxidase I, internal transcribed spacer 1, and a diagnostic antigen, Ts14, from individual cysts isolated from Peru, Colombia, Mexico, India, China, and the Philippines. For these genes, the rate of nucleotide variation was minimal. Isolates from these countries can be distinguished based on one to eight nucleotide differences in the 396 nucleotide cytochrome oxidase I (COI) sequence. However, all of the 15 isolates from within Peru had identical COI sequences. The Ts14 sequences from India and China were identical and differed from the Peru sequence by three nucleotides in 333. These data indicate that there is minimal genetic variability within the species T. solium. Minimal variability was also seen in the ITS1 sequence, but this variation was observed within the individual. Twenty-two cloned sequences from six isolates sorted into 13 unique sequences. The variability observed within the sequences from individual cysts was as great as the variability between the isolates.  相似文献   
993.
Studies of the structure–activity relationships of ubiquinones and specific inhibitors are helpful to probe the structural and functional features of the ubiquinone reduction site of bovine heart mitochondrial complex I. Bulky exogenous short-chain ubiquinones serve as sufficient electron acceptors from the physiological ubiquinone reduction site of bovine complex I. This feature is in marked contrast to other respiratory enzymes such as mitochondrial complexes II and III. For various complex I inhibitors, including the most potent inhibitors, acetogenins, the essential structural factors that markedly affect the inhibitory potency are not necessarily obvious. Thus, the loose recognition by the enzyme of substrate and inhibitor structures may reflect the large cavitylike structure of the ubiquinone (or inhibitor) binding domain in the enzyme. On the other hand, several phenomena are difficult to explain by a simple one-catalytic site model for ubiquinone.  相似文献   
994.
Proteins specifically involved in the biogenesis of respiratory complex I in eukaryotes have been characterized. The complex I intermediate associated proteins CIA30 and CIA84 are tightly bound to an assembly intermediate of the membrane arm. Like chaperones, they are involved in multiple rounds of membrane arm assembly without being part of the mature structure. Two biosynthetic subunits of eukaryotic complex I have been characterized. The acyl carrier subunit is needed for proper assembly of the peripheral arm as well as the membrane arm of complex I. It may interact with enzymes of a mitochondrial fatty acid synthetase. The 39/40-kDa subunit appears to be an isomerase with a tightly bound NADPH. It is related to a protein family of reductases/isomerases. Both subunits have been discussed to be involved in the synthesis of a postulated, novel, high-potential redox group.  相似文献   
995.
Eukaryotic complex I integrated into the respiratory chain transports at least 4 H+ per NADH oxidized. Recent results indicate that the cation selectivity is altered to Na+ in complex I (NDH I) isolated from the enterobacteria Escherichia coli and Klebsiella pneumoniae. A sequence analysis illustrates the characteristic differences of the enterobacterial, Na+-translocating NDH I compared to the H+-translocating complex I from mitochondria. Special attention is given to the membranous NuoL (ND5, Nqo12) subunits that possess striking sequence similarities to secondary Na+/H+ antiporters and are proposed to participate in Na+ transport. A model of redox-linked Na+ (or H+) transport by complex I is discussed based on the ion-pair formation of a negatively charged ubisemiquinone anion with a positively charged Na+ (or H+).  相似文献   
996.
997.
An inulin fructotransferase (DFA I-producing) [EC 2.4.1.200] from Arthrobacter pascens a62-1 was purified and the properties of the enzyme were investigated. The enzyme was purified from culture supernatant of the microorganism 58.5 fold with a yield of 8.32% using Super Q Toyopearl chromatography and butyl Toyopearl chromatography. It showed maximum activity at pH 5.5 and 45 °C and was stable up to 75 °C. This heat stability was highest in the inulin fructotransferases (DFA I-producing) reported until now. The molecular mass of the enzyme was estimated to be 37,000 by SDS-PAGE and 60,000 by gel filtration, and was considered to be a dimer. The N-terminal amino acid sequence (20 amino acid residues) was determined as Ala-Asn-Thr-Val-Tyr-Asp-Val-Thr-Thr-Trp-Ser-Gly-Ala-Thr-Ile-Ser-Pro-Tyr-Val-Asp.  相似文献   
998.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, Iα, Iβ and Iλ, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   
999.
Intramembrane hydrogen bonding and its effect on the structural integrity of purple bacterial light-harvesting complex 2, LH2, have been assessed in the native membrane environment. A novel hydrogen bond has been identified by Raman resonance spectroscopy between a serine residue of the membrane-spanning region of LH2 α-subunit, and the C-131 keto carbonyl of bacteriochlorophyll (BChl) B850 bound to the β-subunit. Replacement of the serine by alanine disrupts this strong hydrogen bond, but this neither alters the strongly red-shifted absorption nor the structural arrangement of the BChls, as judged from circular dichroism. It also decreases only slightly the thermal stability of the mutated LH2 in the native membrane environment. The possibility is discussed that weak H-bonding between the C-131 keto carbonyl and a methyl hydrogen of the alanine replacing serine(−4) or the imidazole group of the nearby histidine maintains structural integrity in this very stable bacterial light-harvesting complex. A more widespread occurrence of H-bonding to C-131 not only in BChl, but also in chlorophyll proteins, is indicated by a theoretical analysis of chlorophyll/polypeptide contacts at <3.5 Å in the high-resolution structure of Photosystem I. Nearly half of the 96 chlorophylls have aa residues suitable as hydrogen bond donors to their keto groups.  相似文献   
1000.
Rufat Agalarov 《BBA》2003,1604(1):7-12
The temperature dependence of the biphasic electron transfer (ET) from the secondary acceptor A1 (phylloquinone) to iron-sulfur cluster FX was investigated by flash absorption spectroscopy in photosystem I (PS I) isolated from Synechocystis sp. PCC 6803. While the slower phase (τ=340 ns at 295 K) slowed upon cooling according to an activation energy of 110 meV, the time constant of the faster phase (τ=11 ns at 295 K) was virtually independent of temperature. Following a suggestion in the literature that the two phases arise from bidirectional ET involving two symmetrically arranged phylloquinones, QK-A and QK-B, it is concluded that energetic parameters (most likely the driving forces) rather than the electronic couplings are different for ET from QK-A to FX and from QK-B to FX. Two alternative schemes of ET in PS I are presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号