首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33672篇
  免费   3327篇
  国内免费   3415篇
  2024年   57篇
  2023年   499篇
  2022年   512篇
  2021年   1029篇
  2020年   1027篇
  2019年   1251篇
  2018年   1042篇
  2017年   1131篇
  2016年   1170篇
  2015年   1241篇
  2014年   1429篇
  2013年   1995篇
  2012年   1332篇
  2011年   1556篇
  2010年   1400篇
  2009年   2038篇
  2008年   1953篇
  2007年   2042篇
  2006年   1861篇
  2005年   1869篇
  2004年   1665篇
  2003年   1451篇
  2002年   1304篇
  2001年   943篇
  2000年   891篇
  1999年   869篇
  1998年   796篇
  1997年   689篇
  1996年   568篇
  1995年   593篇
  1994年   512篇
  1993年   417篇
  1992年   387篇
  1991年   338篇
  1990年   300篇
  1989年   272篇
  1988年   215篇
  1987年   211篇
  1986年   155篇
  1985年   212篇
  1984年   213篇
  1983年   138篇
  1982年   179篇
  1981年   105篇
  1980年   126篇
  1979年   80篇
  1978年   62篇
  1977年   49篇
  1976年   49篇
  1973年   52篇
排序方式: 共有10000条查询结果,搜索用时 295 毫秒
11.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
12.
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.  相似文献   
13.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   
14.
Improving our knowledge of the links between ecology and evolution is especially critical in the actual context of global rapid environmental changes. A critical step in that direction is to quantify how variation in ecological factors linked to habitat modifications might shape observed levels of genetic variability in wild populations. Still, little is known on the factors affecting levels and distribution of genetic diversity at the individual level, despite its vital underlying role in evolutionary processes. In this study, we assessed the effects of habitat quality on population structure and individual genetic diversity of tree swallows (Tachycineta bicolor) breeding along a gradient of agricultural intensification in southern Québec, Canada. Using a landscape genetics approach, we found that individual genetic diversity was greater in poorer quality habitats. This counter-intuitive result was partly explained by the settlement patterns of tree swallows across the landscape. Individuals of higher genetic diversity arrived earlier on their breeding grounds and settled in the first available habitats, which correspond to intensive cultures. Our results highlight the importance of investigating the effects of environmental variability on individual genetic diversity, and of integrating information on landscape structure when conducting such studies.  相似文献   
15.
1. There is ongoing controversy about whether biased sex ratios in diploid insect populations are real or an artefact caused by different behaviours and/or different catchability of the sexes. This was tested by monitoring two field and three semi-natural populations of the damselfly Lestes sponsa. 2. Capture–mark–recapture data showed that population size estimates were about twice as large for males as for females at both field sites. Independent estimates of the sex ratios based on total numbers of males and females captured supported the male bias. 3. Males had higher recapture probabilities than females due to longer times between successive visits in females. Because the same pattern was found in the semi-natural populations, the longer intervals in females are no artefact due to their lower detectability. 4. Theoretical models show that the strong temporary emigration of females tends, if anything, to overestimate female population sizes and that the heterogeneity of recapture probabilities observed in males tends to underestimate male population sizes. Hence, behavioural differences between the sexes do not cause an artificially male-biased sex ratio. 5. Spatial data show that operational sex ratios are male biased at the pond but become female biased in the plots further away from the shoreline; however because of the decrease in densities away from the shoreline, this does not result in a global even sex ratio. 6. Spatial data, temporary emigration patterns, and independent estimates suggest strongly that the male-biased sex ratios in mature damselfly populations are real.  相似文献   
16.
1. Simple mechanical models (random walks and the 'gas model') were used to investigate the movement patterns and intergroup encounter rates of a high- and low-density subpopulation of Grey-Cheeked Mangabeys ( Cercocebus albigena johnstoni, Lydeker) at two sites in the Kibale Forest, Western Uganda.
2. Random walk simulations showed that the presence of conspecific groups could act as 'social barriers' which constrained group movements, and promoted high levels of site attachment to a specific home range area.
3. Encounter rate models showed that in the low-density subpopulation (Kanyawara), intergroup encounters occurred no more frequently than expected if groups were moving randomly and independently of each other. This was in contrast to previous analyses which suggested that Grey-Cheeked Mangabeys employed a social spacing mechanism (mediated by male loud calls) in order to reduce the frequency of encounter to below chance levels.
4. Encounters in the high-density subpopulation (Ngogo) were found to occur less frequently than expected at short range (within 100 m). This was suggested to be due to the operation of a territorial mate defence strategy by males at this site.  相似文献   
17.
18.
Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow‐tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low‐use, medium‐use, and high‐use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high‐use zones. High‐use zones presented similar structure to medium‐ and low‐use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high‐use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.  相似文献   
19.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
20.
N-糖蛋白去糖基化酶(PNGase)是一种广泛存在于真菌、植物、哺乳动物中的去糖基化酶,可以水解N-糖蛋白或 N-糖肽上天冬酰胺与寡糖链连接的化学键,并释放出完整的N-寡糖。PNGase在生物体内参与蛋白质降解、器官发育、个体生长等过程。人PNGase基因功能缺陷会导致先天性去糖基化障碍,小鼠PNGase缺陷会导致胚胎致死性,线虫PNGase缺陷使其寿命下降。本文对PNGase在不同物种的分布、蛋白质结构、酶学功能及生物学功能进行阐述,为PNGase的生理病理功能及致病机制的基础研究提供思路,为PNGase作为糖生物学工具酶或药物开发的创新应用研究奠定基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号