首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1161篇
  免费   95篇
  国内免费   862篇
  2024年   19篇
  2023年   50篇
  2022年   77篇
  2021年   66篇
  2020年   67篇
  2019年   66篇
  2018年   60篇
  2017年   54篇
  2016年   74篇
  2015年   71篇
  2014年   108篇
  2013年   76篇
  2012年   94篇
  2011年   92篇
  2010年   75篇
  2009年   88篇
  2008年   160篇
  2007年   83篇
  2006年   83篇
  2005年   66篇
  2004年   59篇
  2003年   75篇
  2002年   72篇
  2001年   67篇
  2000年   45篇
  1999年   26篇
  1998年   21篇
  1997年   21篇
  1996年   22篇
  1995年   21篇
  1994年   19篇
  1993年   13篇
  1992年   14篇
  1991年   15篇
  1990年   14篇
  1989年   29篇
  1988年   11篇
  1987年   5篇
  1986年   4篇
  1985年   20篇
  1984年   1篇
  1983年   6篇
  1981年   3篇
  1980年   2篇
  1958年   1篇
  1957年   2篇
  1956年   1篇
排序方式: 共有2118条查询结果,搜索用时 31 毫秒
51.
为明确荒漠草原土壤酶活性对降水格局改变的响应机制, 该研究基于宁夏荒漠草原降水量不同梯度变化(减少50%、减少30%、自然降水、增加30%和增加50%)的野外试验(2014年开始试验), 于2016年5-7月采样, 测定分析不同降水梯度2年后对土壤酶活性的影响, 并分析酶活性与植物生物量、微生物生物量C∶N∶P生态化学计量特征以及土壤理化性质的关系。结果表明: (1)与自然降水量相比, 减少30%降水量对3种土壤酶活性均无显著影响, 减少50%降水量显著降低了土壤蔗糖酶活性(P < 0.05); 增加降水量显著提高了土壤蔗糖酶和磷酸酶活性(P < 0.05), 但对脲酶活性无显著影响。(2)减少降水量对植物生物量影响较小(尤其减少30%降水量), 但不同程度地降低了微生物生物量C、N、P, 提高了微生物生物量C∶N和C∶P; 增加降水量则不同程度提高了植物生物量及微生物生物量C、N、P。(3)土壤蔗糖酶和磷酸酶活性随植物及微生物生物量增加而增加; 对土壤酶活性影响显著的土壤因子包括: 含水量、NO3- N、NH4+ N、C∶P、有机C、全N、C∶N和pH (P < 0.05)。研究认为, 减少降水量(尤其是减少30%降水量)对土壤酶活性影响较小, 增加降水量促进了植物的生长、刺激微生物活性, 进而提高了土壤酶活性, 但随着植物生物量增加, 土壤有机C输入增多, 磷酸酶活性相应增强并促进了有机P的矿化, 导致土壤微生物P限制增加。  相似文献   
52.
为从土壤微生物的角度分析东洞庭湖不同植被类型湿地土壤质量状况,本研究选取了苔草、芦苇和柳树3种典型植被类型为对象,在平水期、丰水期和枯水期对其土壤微生物生物量碳(MBC)、氮(MBN)和酶活性进行监测,并分析其主要影响因子。结果表明: 1)3个水位时期,各植被类型湿地土壤MBC、MBN、蔗糖酶和纤维素酶活性(枯水期纤维素酶除外)均表现为0~10 cm高于10~20 cm,而土壤过氧化氢酶活性则相反。2)各植被类型湿地0~20 cm土层土壤MBC、MBN和MBC/TOC(总有机碳)、MBN/TN(总氮)皆以丰水期最低。3)各植被类型湿地0~20 cm土层土壤蔗糖酶活性峰值均出现在枯水期,而纤维素酶活性峰值出现在平水期,过氧化氢酶活性季节性波动较小,以丰水期稍高。4)不同植被类型间比较:平水期和丰水期,芦苇湿地土壤蔗糖酶活性显著高于其他植被类型,而其土壤纤维素酶活性最低,枯水期不同湿地间两种酶活性差异不显著。土壤过氧化氢酶活性在平水期以苔草湿地最高,枯水期以柳树湿地最高,丰水期以芦苇湿地最低。5)相关性分析表明,土壤MBC、MBN和蔗糖酶与TOC、TN、总磷(TP)呈显著正相关,而与pH值呈显著负相关。土壤纤维素酶和过氧化氢酶与TOC、TN、TP呈显著负相关,与pH值呈显著正相关。表明季节性水位波动影响土壤C、N、P和pH值,并对土壤微生物生物量碳、氮和酶活性产生显著影响,使其呈现明显的季节性变化特征。  相似文献   
53.
植物光合作用的产物主要以蔗糖的形式在植物体内进行从源到库的运输。蔗糖转运蛋白是此过程的重要参与者,其表达和调控与植物中光合作用产物的分配紧密关联,从而调控着植物的生长发育、结果结实、抗逆抗病等性状。蔗糖转运蛋白的表达受到植物发育时期、外界环境条件及激素的影响。蔗糖转运蛋白的调控机制有转录因子的调节、基因内部序列调控、蛋白质的磷酸化、蛋白之间的相互作用及质子转运体的活性调节等。综述了国内外对蔗糖转运蛋白表达与活性的调控因素及机制等最新的研究内容,以期为从多角度上探索植物蔗糖转运蛋白的功能和调控机制提供相关研究信息和思路。  相似文献   
54.
以‘宁杞1号’枸杞为研究对象,采用单因素随机区组试验设计,研究不添加NaCl和菌剂(CK)、100 mmol·L-1 NaCl胁迫(NaCl)、100 mmol·L-1 NaCl胁迫下添加解钾菌KSBGY01单菌液(NaCl-M1)、KSBGY02单菌液(NaCl-M2)及其混合菌液(NaCl-M3)对枸杞幼苗叶片叶绿素、多酚、超氧阴离子(O2)、过氧化氢(H2O2)和可溶性糖含量、抗氧化物酶和蔗糖代谢酶活性的影响,以探索解钾菌对盐胁迫下枸杞生理生化特性的影响。结果表明: 盐胁迫下解钾菌能够提高枸杞叶片类黄酮(FLAV)、荧光激发比花青素相对指数(FERARI)、花青素(ANTH-RB)和氮素平衡指数(NBI-G),降低O2和H2O2含量,增加可溶性糖含量及过氧化氢酶(CAT)、蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)和转化酶(INV)活性。不同处理间比较,NaCl-M2处理中枸杞叶片ANTH-RB值、NBI-G值、可溶性糖含量及CAT、SPS、SS和INV活性最高;NaCl-M3处理中枸杞叶片叶绿素含量、FLAV和FERARI值最高;NaCl-M1处理中枸杞叶片超氧化物歧化酶(SOD)活性最高;不添加解钾菌的NaCl处理中枸杞叶片谷胱甘肽过氧化物酶(GSH-Px)活性最高;CK处理中枸杞叶片过氧化物酶(POD)活性最高。对枸杞幼苗14项生理生化指标进行灰色系统关联度分析表明,盐胁迫条件下添加解钾菌处理的枸杞生理生化指标加权关联度均高于CK和NaCl处理,其中NaCl-M2处理的加权关联度最高。因此,添加KSBGY02单菌液更有利于缓解盐胁迫对枸杞幼苗的影响。  相似文献   
55.
横断山河谷区具有极高的景观异质性,气候与植被类型多样化程度较高。为探讨土壤C、N、P、S四种生物元素在滇西怒江、澜沧江、金沙江及元江并流河谷区的区域循环特征,在各河谷的森林、草地、农田中分别取浅层(0~10 cm)土样,测定了土壤中C、N、P、S的循环酶,即β-葡萄糖苷酶(BG)、N-乙酰-β-D-氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)、硫酸脂酶(SU)活性,分析了土壤酶活性及其化学计量学特征与环境因素之间的关系。结果表明: 不同流域和不同土地类型下AP、NAG活性均有显著差异;4种酶活性之间均呈显著正相关,BG、NAG、SU活性由东南向西北随采样点的海拔升高而逐渐升高;在各流域土壤中,酶活性的生态化学计量比均为AP∶SU > BG∶SU > NAG∶SU > BG∶NAG > BG∶AP > NAG∶AP;与各流域内的林地和草地相比,农田土壤BG∶NAG较高,而NAG∶AP较低(元江流域除外);农田土壤中AP∶SU、BG∶SU、NAG∶SU在元江流域小于草地和林地,在澜沧江流域和金沙江流域则大于林地而小于草地。土壤酶活性及其化学计量学特征受到土壤理化性质、气候及区位的综合影响,其中土壤理化性质的影响最大。农业活动对C∶N∶P相关酶化学计量学特征具有显著影响,降低了土壤中N分解酶与其他酶活性的计量比,表现为增加了BG∶NAG,降低了NAG∶AP,农业活动对其他酶化学计量学特征的影响较小。  相似文献   
56.
为克隆杧果(Mangifera indica L.)蔗糖合成酶基因序列,预测其编码蛋白特性,阐明其在果实发育过程中的表达规律和作用.本研究采用同源克隆法和RACE技术克隆了1个编码蔗糖合成酶基因的全长cDNA,命名为MiSS,其cDNA全长2110 bp,开放阅读框为1455 bp,编码484个氨基酸,相对分子量为55.3 kD,理论等电点为6.08.系统进化分析显示,MiSS基因编码的氨基酸序列与温州蜜柑(Citrus unshiu)、荔枝(Litchi chinensis)、龙眼(Dimocarpus longan)氨基酸序列一致性为90%~93%.RT-qPCR分析显示,MiSS基因表达量呈现先上升后下降的趋势,且果实发育各时期果皮内MiSS基因表达量均显著高于果肉,综合分析MiSS基因可能与淀粉的合成密切相关.本研究为进一步了解MiSS基因在杧果蔗糖代谢过程中的作用以及从分子角度阐明植物生长调节剂对杧果蔗糖代谢的影响机理奠定了理论和技术基础.  相似文献   
57.
《植物生态学报》2021,44(12):1262
土壤胞外酶来源于土壤微生物、植物和动物, 是土壤生物地球化学过程的积极参与者, 在森林生态系统的物质循环和能量流动过程中扮演着重要角色。为探明土壤胞外酶活性对碳输入变化及增温的响应, 该研究基于长期增温、去除地表凋落物(以下简称去凋)和切根处理的云南哀牢山亚热带常绿阔叶林控制实验平台, 研究了不同处理(对照、去凋、切根、切根并增温)下表层矿质土壤(0-5和5-10 cm)与碳氮磷获取相关的胞外酶活性, 包括多酚氧化酶(POX)、过氧化物酶(PER)、β-葡萄糖苷酶(BG)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和酸性磷酸酶(AP)。结合铵态氮(NH4+-N)含量、硝态氮(NO3--N)含量、溶解有机碳(DOC)含量、溶解总氮(DN)含量、土壤含水量(SWC)等相关指标, 探讨凋落物碳输入、根系碳输入和温度变化对土壤胞外酶活性及其生态化学计量特征的影响。研究结果表明: 在对照样方, 除POX外其余酶活性均为0-5 cm层显著高于5-10 cm层。与对照相比, 长期的凋落物去除显著降低了0-5 cm层土壤AP和BG活性, 对NAG、PER和POX活性则无显著影响; 长期切根处理显著降低了0-5 cm层土壤BG活性, 但提高了两个土层PER活性; 长期切根并增温处理显著降低了0-5 cm层AP和BG活性, 对其余酶活性无显著影响。冗余分析结果显示SWC和NH4+-N含量是驱动土壤酶活性变化的重要因子。本研究为该生态系统土壤碳氮磷生物地球化学关键过程对全球变化的响应提供了土壤酶学的依据。  相似文献   
58.
土壤酶活性作为生态系统养分循环的关键因素, 是反映土壤质量和生态系统功能的重要指标, 但是关于高寒草地生态系统中不同草地类型间酶活性的差异研究还很少。因此, 该研究在藏北高寒草地选择高寒草甸、高寒草原、高寒草甸草原、高寒荒漠草原和高寒荒漠5种草地类型进行野外原位调查和采样, 测定了涉及碳(C)、氮(N)和磷(P)循环的14种酶的活性, 并建立了高寒草地酶活性与土壤微生物和土壤理化性质等环境因子的关系。结果表明: C循环酶(蔗糖酶、纤维素酶、β-葡萄糖苷酶、多酚氧化酶和过氧化物酶)和P循环酶(碱性磷酸酶)在不同高寒草地类型间活性差异明显, N循环酶中仅芳香氨基酶和亚硝酸盐还原酶两种酶在不同高寒草地类型间活性差异明显。同时, C、N和P循环酶之间存在一定的相关关系, 其中, 蔗糖酶和碱性磷酸酶、纤维素酶和α-乙酰氨基葡萄糖苷酶活性显著正相关, 多酚氧化酶与亚硝酸还原酶和β-乙酰氨基葡萄糖苷酶活性显著负相关。在测定的19个环境指标中, 土壤有机质(SOM)含量、革兰氏阴性菌数量、土壤N和P含量计量比、革兰氏阳性菌数量、细菌数量、放线菌数量、全氮含量、真菌数量是影响土壤酶活性的关键因子, 且SOM含量的影响最大(解释量为11.9%)。综上所述, 不同高寒草地类型间C循环酶、P循环酶和两种N循环酶(芳香氨基酶和亚硝酸还原酶)活性差异显著, SOM含量、微生物数量和N含量等是影响高寒草地生态系统土壤酶活性的关键因子。  相似文献   
59.
以‘金都’火龙果(Hylocereus polyrhizus ‘Jindu’)果实为试材,采用波长254 nm紫外杀菌灯为辐射源,给予不同剂量短波紫外线(Ultraviolet-C,UV-C)照射处理,探讨低剂量UV-C对火龙果采后保鲜的影响及作用机理。结果表明,不同剂量UV-C照射处理能有效抑制‘金都’火龙果果实腐烂和电导率上升,降低果实TSS含量,其中1.0 kJ·m–2紫外线辐照效果最好。1.0 kJ·m–2 UV-C处理能极显著提高贮藏期火龙果的SOD和CAT活性,显著提高贮藏早中期的几丁质酶活性和PPO活性,β-1,3葡聚糖酶活性在贮藏后期也显著高于对照,但降低了火龙果贮藏中期(第6天)的POD活性。此外,1.0 kJ·m–2 UV-C处理显著提高火龙果贮藏期H2O2含量(除第6天外),对果实的失水率无影响。采后火龙果应用适当剂量UV-C照射可提高抗病性,延长贮藏保鲜期。  相似文献   
60.
胭脂红景天叶片呈胭脂红色,花开红色,具有极强的耐寒性和耐旱性,是优良的城市绿化植物。为了扩大胭脂红景天的应用范围,丰富恶劣生境的绿化材料,本试验对从哈尔滨引种到西藏日喀则表现良好的胭脂红景天进行了生理适应性研究。结果表明,随着栽植时间的延长,胭脂红景天叶片中丙二醛含量逐渐升高,但增加的幅度较小,脯氨酸含量先降低后升高,SOD、POD、CAT等保护酶的活性均呈先升高后降低的趋势。胭脂红景天可以通过增加体内渗透调节物质含量和提高保护酶活性来调节自身的生理代谢,适应日喀则地区高辐射、干旱等条件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号