首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   20篇
  国内免费   99篇
  2024年   1篇
  2023年   19篇
  2022年   11篇
  2021年   8篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   8篇
  2013年   9篇
  2012年   3篇
  2011年   8篇
  2010年   12篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有138条查询结果,搜索用时 189 毫秒
81.
82.
近年来,随着全球人口不断增加以及工业生产水平的提高,二氧化碳等温室气体的排放逐年增加,这些碳中的大部分,累积在大气圈中引起温室气体浓度升高,打破了大气圈原有的热平衡,导致全球变暖。森林在碳汇方面的积极作用(ForestCarbonSinks)近年来已被广泛关注,黑河林业以有林地201万公顷的保有量发挥着巨大的碳汇功能,黑河林业工作者致力于探索更好的经营方式来提升森林蓄积量即森林的碳汇功能。  相似文献   
83.
人工高效经营雷竹林CO2通量估算及季节变化特征   总被引:1,自引:0,他引:1  
陈云飞  江洪  周国模  杨爽  陈健 《生态学报》2013,33(11):3434-3444
利用涡度相关技术观测高效经营雷竹林生态系统的1a碳通量变化过程,初步计算分析了碳收支以及影响的环境因子.数据结果表明,雷竹林系统全年碳收支情况为碳汇,固碳能力小于毛竹林和杉木林,同时也小于水稻田和北方农田.全年净生态系统碳交换量(NEE)为-126.303Cg·m-2·a-1,生态系统呼吸(RE)为1108.845 Cg·m-2·a-1,生态系统总交换量(GEE)为-1235.15Cg·m-2·a-1.其中冬季(12月-2月)覆盖时为碳源,其余月份为碳汇.各月碳吸收量以11月最高,6月次之,呈双峰变化,碳排放量以1月为最高.计算全年平均固碳效率为11%,12-2月为负值,11月最高33%.生态系统呼吸呈单峰变化,以夏季最高,冬季覆盖提高地温后生态系统呼吸随之增加,全年RE受温度影响显著成指数关系.人工经营下温度是影响雷竹林CO2通量过程的主要因素,同时大量有机物覆盖增加了碳排放.  相似文献   
84.
土壤是陆地生态系统最大的有机碳库,比植被碳库或大气碳库的两倍还多。准确评估土壤有机碳库是预测全球变化与土壤有机碳之间反馈关系的关键。但目前对土壤有机碳库的估算还存在很大不确定性。该文综述了土壤有机碳库估算及其影响因素和土壤有机碳库估算不确定性的来源和常用的采样方法,以及计算土壤碳汇的最新研究进展。未来技术进步以及模型的不断完善可能会降低土壤有机碳库估算的不确定性,提高其估算的精度  相似文献   
85.
西南地区退耕还林工程主要林分50年碳汇潜力   总被引:7,自引:2,他引:5  
姚平  陈先刚  周永锋  赵文军  陆梅  涂璟 《生态学报》2014,34(11):3025-3037
为评估西南地区退耕还林工程主要林分未来50a碳汇潜力,调查收集该地区2011年以前退耕还林工程主要造林树种及其造林面积等相关数据资料,利用国家森林资源清查资料中人工林历史数据建立生长模型,结合文献调研获得的相关林分碳计量参数,预测出本区域退耕还林工程7种主要林分碳储量和年碳储量未来变化。结果表明:西南地区退耕还林工程主要林分总碳储量在2020、2030、2040、2050和2060年分别为52.98、73.88—80.57、73.62—102.16、88.41—115.17和77.15—123.36TgC,年总碳储量则分别为3.15、-1.11—2.45、-3.92—1.95、2.08—0.96和0.25—0.73TgC,到2060年华山松、马尾松、柳杉、杉木、柏树、杨树和桉树7种林分碳汇潜力在无采伐情景下分别达到:13.01、15.01、13.44、24.13、28.05、15.63和14.09TgC,可对本地区森林碳汇功能产生明显影响。  相似文献   
86.
随着社会经济的不断发展,温室效应问题越发引起世界的关注,如何解决二氧化碳的排放问题,如何在人与自然和谐发展的前提下获得人类社会的长远发展已经成为人类关注的话题。正是这种背景下,林业碳汇机制应运而生,文章从林业碳汇的基本问题出发,对其理论问题以及实践发展进行系统的分析,并对其中要注意的问题进行周密的思考,希望这样的研究能够对环境的发展起到一定的促进作用。  相似文献   
87.
研究降雨格局(如降雨量和降雨时间)对滨海盐沼湿地土壤碳矿化的影响,对于深入理解土壤碳的稳定性和积累机制具有重要意义。本研究选取远离海岸且不受潮汐影响的黄河三角洲原生盐地碱蓬盐沼湿地为对象,通过野外原状土柱的控制试验,分析土壤碳矿化(CO2和CH4通量)在不同时期(干旱期和湿润期)对降雨事件的响应。结果表明: 降雨时间和降雨量对土壤CO2通量的影响存在交互作用。在干旱期,大降雨事件显著降低了土壤CO2通量;而湿润期的降雨事件对土壤CO2通量没有显著影响,这可能与盐沼湿地的水盐运移有关。降雨量、降雨时间及其交互作用均对土壤CH4通量没有显著影响。降雨时间和降雨量对CH4/CO2比率均没有显著影响,但是相关分析表明随着土壤含水量和盐分的升高,CH4/CO2比率呈升高趋势。随着降雨量的增加,土壤含水量和土壤盐分都显著增加,且两因素呈现显著的正相关关系。因此,未来该地区降雨体系改变将可能通过调控土壤水盐运移等条件对该滨海湿地土壤碳矿化和碳汇功能产生深远影响。  相似文献   
88.
滨海盐沼湿地是缓解全球变暖的有效蓝色碳汇, 但是近岸海域富营养化导致的大量氮输入对盐沼湿地稳定性和碳汇功能构成严重威胁。潮汐作用下大量氮输入对盐沼湿地植物光合碳输入、植物-土壤碳分配和土壤碳输出等碳循环关键过程产生深刻影响, 进而影响盐沼湿地碳汇功能评估的准确性。该文从植物光合固碳、植物-土壤系统碳分配、土壤有机碳分解、土壤可溶性有机碳释放、盐沼湿地土壤碳库5个方面综述了氮输入对盐沼湿地碳循环关键过程的影响。在此基础上, 针对当前研究的不足, 提出今后的研究中, 需要进一步探究氮输入对盐沼湿地植物光合固碳及碳分配过程的影响、盐沼湿地土壤有机碳分解的微生物机制、盐沼湿地土壤可溶性有机碳产生和横向流动的影响、以及氮类型对盐沼湿地土壤碳库的影响。以期为揭示氮输入对盐沼湿地碳汇形成过程与机制提供基础资料和理论依据, 为评估未来近岸海域水体富营养化影响下滨海盐沼湿地碳库的潜在变化提供新思路。  相似文献   
89.
文章以海带(Saccharina japonica)幼苗为实验材料, 对比了其在自然海水+50%海面光强、自然海水+100%海面光强、营养盐加富海水+50%海面光强、营养盐加富海水+100%海面光强4种条件下的溶解有机碳(DOC)释放速率, 以揭示光照与营养盐的协同作用对大型藻类释放DOC的影响机制。研究发现, 在自然海水条件下, 50%与100%海面光强照射下海带幼苗DOC释放速率分别为(11.67±3.07)和(22.65±4.58) μmol/(g·h), 随着光强增加, 释放DOC速率显著提升(P<0.05), 氧气净释放速率显著增大(P<0.05), 且二者光谱斜率差异显著(P<0.05); 在营养盐加富海水条件下, 50%与100%海面光强照射下海带幼苗DOC释放速率分别为(30.88±7.96)和(39.03±14.78) μmol/(g·h), 随着光强增加, 释放DOC速率提升不显著(P>0.05), 氧气净释放速率显著提高79.24%(P<0.05), 二者光谱斜率差异不显著(P>0.05)。结果表明, 在寡营养条件下(自然海水), 海带幼苗释放DOC速率与光照强度呈正相关, 表现为“溢出”机制; 在富营养条件下, 海带幼苗释放DOC速率与光照强度不相关, 表现为“扩散”机制。海带幼苗释放DOC同时受到“溢出”和“扩散”两种机制的调控, 何种机制占主导取决于营养水平。  相似文献   
90.
中国西北干旱区植被碳汇估算及其时空格局   总被引:4,自引:0,他引:4  
潘竟虎  文岩 《生态学报》2015,35(23):7718-7728
通过修正的CASA模型估算2001—2012年间西北干旱区陆地生态系统的净第一性生产力(NPP),并结合土壤微生物呼吸方程,计算出12a的净生态系统生产力(NEP),分析了植被碳汇的时空变化规律。结果表明:研究区的NPP表现出很强的随季节变化的规律,全年7月份NPP为最高值,12月为最低值,12年间NPP的年均值变化不大。2001—2012年研究区的植被碳汇在波动变化中有所增加,其中2006年的碳汇平均值最小,为609.04 g C m~(-2)a~(-1),2012年最大,为648.02 g C m~(-2)a~(-1);年内碳汇的最大值主要出现在5—7月;碳汇能力由大到小的植被类型为针叶林农田灌丛阔叶林草原荒漠草原。研究区多年平均碳汇量呈现自西向东逐渐增加的规律,西辽河流域草原区的NPP和碳汇平均值最大,塔里木盆地暖温带荒漠区最小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号