首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   46篇
  国内免费   379篇
  2024年   5篇
  2023年   16篇
  2022年   25篇
  2021年   24篇
  2020年   26篇
  2019年   31篇
  2018年   15篇
  2017年   17篇
  2016年   14篇
  2015年   23篇
  2014年   36篇
  2013年   29篇
  2012年   35篇
  2011年   33篇
  2010年   28篇
  2009年   38篇
  2008年   37篇
  2007年   46篇
  2006年   33篇
  2005年   33篇
  2004年   28篇
  2003年   44篇
  2002年   45篇
  2001年   30篇
  2000年   31篇
  1999年   30篇
  1998年   25篇
  1997年   23篇
  1996年   18篇
  1995年   24篇
  1994年   24篇
  1993年   15篇
  1992年   17篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   1篇
排序方式: 共有947条查询结果,搜索用时 15 毫秒
41.
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interac- tion partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis~ In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.  相似文献   
42.
[目的]使用自行设计的类弹性蛋白(Elastin-like protein,ELP) ELP[Ⅰ]50作为非色谱纯化标签,分离纯化重组硫氧还蛋白(Thioredoxin,Trx),并研究聚乙二醇(Polyethyleneglycol,PEG)对ELP[Ⅰ]50-Trx相变温度(Inverse temperature transition,Tt)的影响.[方法]人工合成Trx基因,将其亚克隆到自行构建的表达载体pET28编码ELP[Ⅰ]50标签下游,转入大肠杆菌BLR(DE3)进行表达.融合蛋白表达后,采用可逆相变循环(Inverse transition cycling,ITC)分离纯化,并检测不同浓度PEG时的Tt值.[结果]成功表达、分离纯化出融合蛋白ELP[Ⅰ]50-Trx,检测出该蛋白浓度为25 μmol/L时,Tt为28.6℃;而当PEG的浓度为5%、10%、15%、20%时,Tt分别降至22.3℃、15.9℃、6℃、0℃.[结论]ELP[Ⅰ]50标签高效纯化重组蛋白具有操作简便、成本较低、易于扩大的优势,而PEG能降低蛋白的Tt值,进一步增强分离纯化效果,扩大使用范围,可望应用于分离纯化多种重组蛋白.  相似文献   
43.
自古,我国就是中草药的发源地,我国中药产业已经完成了包括中药研发、中药种植、中药生产和中药销售的整个中药产业链的开发,而对中药材的生产和保存是中药科学的基础,本文阐述了采用硫熏对中药材进行加工的研究现状,并且探讨其存在的问题,以及解决相应问题的对策。从而为硫磺熏制加工中药材的提供科学可靠的依据。  相似文献   
44.
包埋法固定化对硫氧化微生物菌群结构和功能的影响   总被引:1,自引:0,他引:1  
【目的】为探讨包埋法固定化过程对硫氧化菌群硫化物去除能力及菌群微生物群落结构的影响,【方法】以聚乙烯醇-海藻酸钠-活性炭为载体,对硫氧化菌群进行了固定化,并采用富含硫化物的无机盐培养基,对比固定化与非固定化硫氧化菌群对硫化物的氧化去除能力。同时,利用PCR-DGGE技术,探讨硫氧化菌群在固定化前后以及在硫化物氧化去除过程中微生物群落结构变化。【结果】在对硫氧化菌群进行固定化之后,12 h之内对硫化物的最大去除能力从1000 mg/L下降为600 mg/L。硫氧化菌群的微生物群落结构发生了明显变化,但菌群中的硫氧化菌Catenococcus thiocycli未受影响,硫氧化菌Thioclava pacifica在菌群中的地位反而得到了强化。【结论】受制于底物在载体材料中的扩散迁移效率,硫氧化菌群对硫化物的氧化去除能力在固定化之后有所下降。由于不同微生物对固定化形成的微环境的适应能力以及对载体附着能力的不同,固定化对硫氧化菌群的微生物群落结构产生较大影响。  相似文献   
45.
羊毛硫肽类化合物(Lanthipeptide)生物合成新进展   总被引:1,自引:0,他引:1  
羊毛硫肽化合物(Lanthipeptides)是由核糖体合成并经过翻译后修饰得到的一大类肽类天然产物。这类化合物广泛的产生于不同种类的细菌,具有丰富的结构和生物活性多样性,为活性药物研究和开发提供重要的来源。本文综述了近几年来羊毛硫肽化合物生物合成进展,从其合成酶结构,进化机制,区域和立体选择性控制等方面进行了简要的讨论,展示了羊毛硫肽类化合物生物合成中特殊而迷人的酶学机制。  相似文献   
46.
高雅丽  邓子新  陈实 《微生物学报》2016,56(12):1831-1839
DNA磷硫酰化修饰是DNA骨架上的第一例生理修饰。该修饰由dnd ABCDE编码的5个蛋白协同作用,以硫原子取代DNA磷酸二酯键上一个非桥接的氧原子。研究发现,DNA磷硫酰化修饰广泛存在于各种微生物中,在不同细菌中存在序列特异性,且具有R_P空间构象专一性。近年来,对DNA磷硫酰化修饰的研究取得了一系列的成果。为了对DNA磷硫酰化修饰有一个系统全面的了解,本文将就这一特殊生理修饰的发现过程,研究进展,未来所面临的机遇及挑战作一个简要的概述。  相似文献   
47.
金属硫蛋白(Metallothionein,MT)是一类富含半胱氨酸的小分子蛋白质,参与机体重金属解毒、维持金属元素代谢平衡以及清除自由基等生理功能。为了解斧文蛤金属硫蛋白(Ml-MT)的分子生物学特征及其在重金属Cd2+胁迫下的响应机制,本文采用RACE技术从斧文蛤(Meretrix lamarckii)总RNA反转录产物中获得了636 bp的Ml-MT cDNA基因序列。该序列包含65 bp的5非编码区(UTR)和340 bp的3非编码区(UTR)以及231 bp的开放阅读框(ORF),可编码76个氨基酸;其中半胱氨酸占27%,不含芳香族氨基酸,含16个MT所特有的Cys-Xn-Cys结构,预测的分子量约为7.704 kD,理论等电点7.138。MT氨基酸序列比对分析表明:斧文蛤金属硫蛋白(Ml-MT)与丽文蛤(Meretrix lusoria)的相似性高达88%,与文蛤(Meretrix meretrix)的同源性为87%。实时荧光定量(qRT-PCR)检测MT在斧文蛤5种组织中均有表达,但存在组织特异性,其中内脏团表达量最高,其次依次为鳃丝、闭壳肌、外套膜、斧足。在Cd2+(0.13 mg/L)胁迫0、6h、12h、24h、48h、72h和96h下,斧文蛤内脏团MT呈现出不同程度的上调表达,具体表现为高-低-高-低的波浪式变化,除6h以外,其他时间点均与对照组存在极显著差异(P0.01)。本研究表明:MT基因在维护机体正常生理功能及斧文蛤抵御重金属Cd2+胁迫过程中发挥着重要的分子调控作用。  相似文献   
48.
目的:根据TMT技术筛选少弱精子症患者精子差异蛋白的结果,选取硫氧还蛋白2(thioredoxin 2,Trx 2)、硫氧还蛋白还原酶1(thioredoxin reductase 1,TrxR 1)进行验证,探讨二者在少精、弱精和少弱精子症中的表达变化及其意义。方法:收集105例少精子症组(O组)、150例弱精子症组(A组)、50例少弱精子症组(OA组)和106例正常精液男性(N组)精液,分离出精子,对少弱精子症进行串联质谱标签(Tandem Mass Tag,TMT)技术蛋白质组学分析,根据少弱精子症组的精子差异蛋白结果选取Trx 2、TrxR 1,通过免疫荧光和免疫印迹方法检测其在O组、A组、OA组的表达情况。结果:TMT技术蛋白质组学结果显示Trx 2为上调差异蛋白(为N组的1.31倍),TrxR 1为下调差异蛋白(为N组的0.82倍)。免疫荧光和免疫印迹结果显示O组、A组、OA组Trx 2表达显著高于N组(P0.05),O组、OA组TrxR 1的表达显著低于N组(P0.05)。二者在OA组的结果与蛋白质组学结果一致。结论:Trx 2、TrxR 1可能在少精、弱精及少弱精子症的发生中起着重要的作用,并有望成为少弱精子症患者精子的候选标志物及治疗靶点。  相似文献   
49.
目的观察高表达RORα对二烯丙基二硫(DADS)抑制人胃癌MGC803细胞增殖、迁移与侵袭的影响。方法集落形成实验与流式细胞术检测细胞增殖与细胞周期;细胞划痕和Transwell实验分别检测细胞迁移与侵袭。RT-PCR与Western blot分别检测RORα、MMP-9和TIMP3 mRNA与蛋白表达水平。结果RT-PCR与Western blot检测显示,RORα高表达与DADS处理较对照组与空载体组RORαmRNA与蛋白表达明显上调,DADS+RORα高表达组上调更为显著(P<0.05)。与对照组和空载体组比较,RORα高表达与DADS处理组MMP-9表达下调,TIMP3表达上调,DADS+RORα高表达组改变最为显著。集落形成实验显示,RORα高表达与DADS处理组较对照组与空载体组的集落形成率明显降低。流式细胞术显示,与对照组和空载体组比较,RORα高表达与DADS处理组G2/M期细胞比率明显升高。细胞划痕和Transwell实验显示,RORα高表达与DADS处理组细胞迁移与侵袭能力明显降低。结论RORα高表达可通过上调TIMP3与下调MMP-9促进DADS阻滞MGC803细胞G2/M期和抑制增殖与迁移侵袭。  相似文献   
50.
硫氧还蛋白互作蛋白(thioredoxin interacting protein, Txnip)是一种氧化还原调节蛋白质,与硫氧还蛋白结合并抑制其活性,调节细胞氧化还原状态,影响细胞多种生理过程,然而其在猪脂肪细胞分化中的作用尚不明确。本文设计合成3对靶向猪Txnip基因的shRNA寡核苷酸,分别连接于重组慢病毒载体pGLV_3/H_1/GFP+Puro构建siRNA表达质粒。测序验证后,与包装质粒共转染293T细胞,获得滴度1×10~8 pfu/mL的慢病毒干扰质粒。以MOI值100转染原代培养猪前体脂肪细胞,转染率均达80%以上,其中Txnip-shRNA-2转染细胞Txnip基因沉默率达75%。转染Txnip-shRNA-2的猪前体脂肪细胞用成脂分化培养液诱导后,每隔1 d检测细胞成脂分化及相关基因表达。结果发现,其分化比阴性对照质粒转染或未转染细胞显著增强(P<0.05),PPARγ和FAS mRNA表达水平显著提高(P<0.05)。本文构建siRNA慢病毒表达质粒能有效干扰猪Txnip基因表达,Txnip表达沉默可通过上调PPARγ表达促进猪前体脂肪细胞分化。本研究提示,Txnip可能是猪脂肪细胞分化的抑制因子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号