首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   81篇
  国内免费   404篇
  2024年   7篇
  2023年   28篇
  2022年   23篇
  2021年   33篇
  2020年   35篇
  2019年   27篇
  2018年   28篇
  2017年   28篇
  2016年   42篇
  2015年   26篇
  2014年   26篇
  2013年   23篇
  2012年   16篇
  2011年   26篇
  2010年   29篇
  2009年   22篇
  2008年   27篇
  2007年   14篇
  2006年   20篇
  2005年   14篇
  2004年   14篇
  2003年   10篇
  2002年   20篇
  2001年   14篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   13篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1982年   1篇
  1958年   1篇
排序方式: 共有633条查询结果,搜索用时 18 毫秒
151.
文章以青藏高原东部窄叶鲜卑花灌丛为研究对象,采用开顶式生长室(OTCs)模拟增温实验(+1.2℃),分析增温对灌木层和草本层各器官碳、氮分配的影响及其影响因素,以揭示青藏高原东部高寒灌丛灌木层和草本层碳、氮分配对增温的响应策略。结果显示:(1)增温使窄叶鲜卑花灌木层叶、粗根、细根碳库显著增加18.8%、7.7%和139.4%,使灌木层细根氮库显著增加153.9%;增温使草本层地上和地下部分碳库显著增加60.4%和130.5%,使草本层地上和地下部分氮库显著增加46.1%和124.0%。(2)增温使灌木层茎和粗根碳分配比例显著降低18.9%和16.2%,使灌木层叶、茎和粗根氮分配比例显著降低25.2%、23.3%和14.4%,使灌木层细根碳、氮分配比例显著增加86.5%和96.2%;增温使草本层地上部分碳、氮分配比例显著降低19.5%和18.9%,使草本层地下部分碳、氮分配比例显著增加15.6%和24.8%。(3)Pearson相关分析和多元线性回归分析结果表明,空气温度和土壤微生物生物量是影响灌木层地上碳、氮分配的主要因子,能解释其变异的72.0%以上;土壤温度、土壤有机碳含量和土壤脲酶活性是影响灌木层地下碳、氮分配的主要因子,能解释其变异的92.0%以上;土壤有机碳含量、土壤转化酶和脲酶活性是影响草本层地上和地下碳、氮分配的主要因子,能解释其变异的92.8%以上。(4)土壤氮素有效性对灌木层和草本层生物量碳、氮分配的影响不显著。研究表明,气候变暖情景下,青藏高原东部窄叶鲜卑花高寒灌丛的灌木层和草本层植物通过提高地下部分碳、氮分配,进而更好地适应外界环境温度的提高。  相似文献   
152.
气温增幅夜间大于白天是全球气候变暖的显著特征之一。夜间增温引起南方单季稻减产,而施硅可提高水稻产量。本研究通过田间模拟试验,分析了施硅对夜间增温下水稻主要生育期植株分蘖数、生物量等生长指标以及产量和品质的影响。增温设2水平:常温对照(CK)和夜间增温(NW),采用被动式夜间增温方法,即夜间(19:00—6:00)用铝箔膜覆盖植株冠层以模拟夜间增温;硅肥(钢渣)用量设2水平:不施硅(Si0)和施硅(Si1,200 kg SiO2·hm-2)。结果表明:与常温对照比,夜间增温使水稻生长期冠层和5 cm土层夜间平均温度分别升高0.51~0.58℃和0.28~0.41℃。夜间增温使分蘖数和叶绿素含量分别较CK降低2.5%~15.9%和0.2%~7.7%;而施硅使分蘖数和叶绿素含量较不施硅分别提高1.7%~16.2%和1.6%~16.6%。与CK相比,夜间增温下施硅显著提高了灌浆-成熟期地上部干重、全株干重和产量,增幅分别为64.1%、55.3%和7.1%;显著增加了精米率、整精米率和淀粉含量,增幅分别为2....  相似文献   
153.
根据玉米生育期的田间试验资料分析了土壤-植物-大气连续体中水势和水流阻力的分布,结果表明土壤与植物叶片之间的水势差在玉米抽雄期前达0.8—1.0MPa,到抽雄期以后达1.0—1.5MPa,叶片与大气之间的水势差则在抽雄期前后分别达80—120MPa和60—80MPa;连续体内的水流阻力主要在叶片与大气之间。建立了连续体中玉米叶片水势的动态模拟公式,模拟叶水势具有较高的精度。最后,揭示了叶片蒸腾速率与叶-气系统水势差和水流阻力的关系,当叶片与大气之间的水势差达90—100MPa之后,蒸腾速率随叶-气间水势差增加而减小。  相似文献   
154.
植物物候对气候变暖的响应是全球气候变化研究的重要内容。目前,高海拔生态系统植物物候对气候变暖响应的研究仍然较少。该研究依托西藏那曲高寒草地生态系统国家野外科学观测研究站布设的梯度增温实验,分别于2015、2017、2018和2021年对模拟增温下优势物种高山嵩草(Kobresia pygmaea)和钉柱委陵菜(Potentilla saundersiana)返青期、现蕾期和开花期等表征植物物候的指标进行了观测,以期揭示增温下藏北高寒草甸植物物候变化机制。结果表明:随着温度升高,高寒草甸中优势植物物候具有不同的变化趋势。高山嵩草返青、现蕾和开花物候期的推迟幅度与温度升高幅度呈正相关关系;钉柱委陵菜返青、现蕾和开花时间随着温度上升表现为先提前后推迟;这表明高寒草甸植物物候对增温产生异步响应。此外,长期增温下的藏北高寒草甸优势种的物候变化均显示出了延迟效应。结构方程归因分析发现,空气温度升高促使高山嵩草返青时间推迟;低水平增温可以促进钉柱委陵菜物候提前,而随着温度继续升高其物候响应发生逆转,土壤水分在决定物候对气候变暖响应的幅度和方向上具有关键作用。该研究结果揭示了藏北高寒草甸优势植物物候响...  相似文献   
155.
根据现有的光合作用和蒸腾作用的模型,利用Ball-Berry 的气孔导度模型,将叶片的光合作用模型和蒸腾作用模型结合起来,建立了光强(I)、叶片-大气水汽饱和差(VPD)和大气CO2 浓度(Ca)等环境因子对小麦叶片水分利用效率(WUE)影响的模型。由于这3 种环境因子对光合、蒸腾的影响方式上的差异,作为两者之比的叶片WUE随各环境因子的变化出现复杂的图景,同时,在人工气候箱内分别于这3 个因子变化时对光合、蒸腾的变化作了测定,计算了叶片的W UE。测定结果与模拟结果的对比表明,在多数情况下两者符合程度良好,但在高Ca下有较大的偏离  相似文献   
156.
4种针叶幼树的光合生理特性与大气湿度关系的研究   总被引:12,自引:0,他引:12  
郭连生  田有亮 《生态学报》1994,14(2):136-141
应用225MK3IRGA在室内控制的环境条件下测定研究了侧柏,樟子松,油松和杆等4种针叶幼树的净光合速率,暗呼吸强度,光补偿点与大气湿度的关系,研究结果证明,各种幼树的净光合速率均随大气湿度的降低而减弱,二者之间的关系可用y=a+blnx方程表达。其变化速率(b)在树种间有明显差异,它可以反映出不同树种对大气干旱忍耐力即抗旱性的差异“b"值小的树种表明其抗旱性强。依此排列出的上述4种幼树的抗旱性强  相似文献   
157.
陆菱妹  王奕正  邓立杰   《广西植物》1982,(4):197-200
<正> SO_2是大气污染中数量最多、散布最广的一种污染物,对人体健康和动植物生长都有一定的危害性。而植物对环境污染物有一定的吸收净化能力。 我们于1980年对桂林六个功能区、灵川钢铁厂等地绿化植物叶片含硫量进行分析研究,  相似文献   
158.
柯为 《微生物学通报》2006,33(3):132-132
在芳香烃类中苯是一种致癌物,WHO于1993年将苯评为一类致癌物,它是石油裂解产物之一,在常温下即可挥发,污染大气;汽车尾气等污染物中含有苯致癌物。在我国东北吉林石化公司双苯厂发生爆炸后而造成约100吨苯类物质流入松花江而污染的重大事件,采取有关治污措施使污染水质达  相似文献   
159.
水生生态系统的碳循环及对大气CO2的汇   总被引:16,自引:0,他引:16  
严国安  刘永定 《生态学报》2001,21(5):827-833
水生生态系统,特别是海洋无疑是大气CO2的一个巨大的汇。海洋对大气CO2的汇以及大气圈和海洋之间碳的变换量在很大程度上取于混合层碳酸盐化学、水中溶解碳的平流传输、CO2通过空气--海水界面的扩散、海洋生物生产和所产生的有面碳化合物的沉隆等,现在已建立和发展了多种海洋碳子模型以对CO2的汇进行估测。根据国内外研究资料,综述了水生生态系统碳循环过程及“生物泵”作用机制等方面的研究进展;介绍了两大类主要的海洋碳子模型:厢式模型和普通环流模型,采用这些模型对海洋碳汇的估算约为1.2-2.4GtC/a;分析了湖泊、河流等对大气CO2汇的特点及向海洋的转移,并对影响水体生态系统碳循环和大气CO2汇的因素进行了讨论。  相似文献   
160.
深入了解N2O在不同生态系统土壤及大气中产生和交换特征对于全球气候变化研究具有重要意义.本研究重点探讨N2O在高寒草原近地表圈层中的产生及迁移过程机制.于2000年7月至2001年7月在青藏高原高寒草原地区从土壤1.5 m深到大气中32 m高度10个层次梯度进行N2O浓度变化的观测.结果显示,土壤和大气中N2O浓度均有明显的变化特征.大气中各个层次N2O的浓度都低于土壤中N2O浓度,此浓度差异直接导致了该地区高寒草原土壤向大气中排放N2O气体,其平均排放通量为0.05×10-4μmo1.m-2.s-1,但是在实验点上全年的观测中,N2O气体排放并没有表现出明显的季节性变化特征.土壤中N2O浓度随深度增加而不断升高,浓度最高值出现在1.5 m深处.进一步的分析表明,N2O浓度随深度递增主要是由环境因子中同样递增的土壤湿度所引起的.大气中不同梯度上N2O气体没有明显的浓度差异.近地表各个圈层中N2O浓度在季节上有非常相似的变化特征,即N2O高浓度均出现在入秋和深冬时节.除了N2O浓度变化在各个圈层之间显著相关以外,表层土壤中N2O浓度也与N2O排放变化有明显的相关关系,这表明浓度的差异是导致N2O气体排放变化的最直接因素.近地表土壤中N2O气体是土壤表层N2O气体排放的直接源泉,并且深层土壤中的N2O气体浓度高于浅层土壤,由此我们可以认定土壤中N2O气体通过微生物作用产生以后,由于浓度差异导致从深层土壤到浅层土壤的逐步扩散,最后经地表排放到大气当中去.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号