首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   51篇
  国内免费   503篇
  658篇
  2024年   6篇
  2023年   12篇
  2022年   17篇
  2021年   23篇
  2020年   21篇
  2019年   24篇
  2018年   17篇
  2017年   23篇
  2016年   27篇
  2015年   25篇
  2014年   33篇
  2013年   32篇
  2012年   21篇
  2011年   40篇
  2010年   20篇
  2009年   33篇
  2008年   34篇
  2007年   34篇
  2006年   20篇
  2005年   29篇
  2004年   28篇
  2003年   49篇
  2002年   21篇
  2001年   17篇
  2000年   11篇
  1999年   10篇
  1998年   3篇
  1997年   5篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
排序方式: 共有658条查询结果,搜索用时 0 毫秒
641.
 采用碱液吸收法对锡林河流域温带典型草原一退化群落的土壤呼吸进行了测定,并分析了温度和水分对土壤呼吸的影响,结果表明:1)土壤呼吸总体趋势是夏季高,其它季节低,但季节动态呈现不规律的波动曲线;2)气温、地表温度以及5 cm、10 cm、15 cm和25 cm的土壤温度均与土壤呼吸速率呈显著的指数关系,温度对土壤呼吸的影响在低温时比高温时更显著;3)0~10 cm和10~20 cm土层的土壤含水量均与土壤呼吸速率呈显著的线性关系,消除气温的影响后则呈更为显著的乘幂关系;4)根据变量在p=0.05水平上的多元回归分析结果得到关于土壤呼吸与气温和10~20 cm土壤含水量的关系模型:y=5 911.648×e0.04216Ta×M20. 90758 (R2=0.8584,p<0.0001) ,这一模型比单变量模型能更好地解释土壤呼吸的变化情况;5)实验期间土壤呼吸的平均速率为661.35 mgC·m-2·d-1,以气温、地表温度以及5 cm、10 cm、15 cm和25 cm的土壤温度为依据得到的Q10值依次为1.63、1.47、1.52、1.70、1.90、1.97。  相似文献   
642.
为探讨甲硫氨基酸对亚热带红壤硝化作用和N2O排放的影响,选择福建省建瓯市万木林保护区的山地红壤为研究对象,在土壤饱和持水量(WHC)60%和90%的条件下,开展室内培养试验.试验分为对照(CK)、添加甲硫氨基酸(M)、甲硫氨基酸和硫酸铵(MA)、甲硫氨基酸和亚硝酸钠(MN)、甲硫氨基酸和葡萄糖(MC)5个处理.结果表明: 与对照相比,M处理使土壤NH4+-N平均含量显著提高0.8%~61.3%,而NO3--N含量显著降低13.2%~40.7%;60%WHC条件下,MC处理土壤NO2--N含量高于M处理,MA、MN处理NO3--N含量高于M处理,且MN处理高于MA处理,M处理于试验后期最低,表明甲硫氨基酸抑制了硝化作用的亚硝化过程.碳添加处理使甲硫氨基酸在一定程度上降低NH4+-N含量,抑制了土壤自养硝化,并且甲硫氨基酸和碳源共同作用下NO3--N含量变化与土壤水分条件有关,在90%WHC条件下,碳加入后反硝化作用更明显;而NO3--N含量降低不足以表明是异养硝化受到抑制所致.甲硫氨基酸在一定程度上促进土壤N2O的释放,90%WHC条件下较60%WHC条件下释放量更大,且葡萄糖添加的促进效果更明显.  相似文献   
643.
王克鹏  张仁陟  董博  谢军红 《生态学报》2014,34(13):3752-3761
通过长期定位试验研究了黄土高原西部旱农区,传统耕作方式和5种保护性耕作措施对豌豆-小麦(P→W)和小麦-豌豆(W→P)轮作序列的耕层土壤水分和作物叶水势的影响。结果表明,与传统耕作(T)处理相比,保护性耕作都能不同程度地提高0—30 cm土层土壤含水量,增幅为3.29%—28.67%,其中免耕+秸秆覆盖(NTS)处理的土壤含水量在整个生育期内均为最高。豌豆和春小麦在不同生育期,叶水势的日变化趋势大致相同,均为清晨6:00最高,然后随着时间的推移而下降,大约在12:00—14:00之间达到最低,随后逐渐回升。春小麦各处理在拔节期和抽穗期的叶水势相对较高,孕穗期和开花期次之,灌浆期最低;叶片相对含水量在拔节期和抽穗期最高,开花期次之,灌浆期最低。豌豆各处理的叶水势均在出苗期和孕蕾期达到了最大值,分枝和开花期结荚期次之,灌浆成熟期相对较低;叶片相对含水量均随生育期的进程而呈下降趋势。整个生育期春小麦和豌豆各处理10:00的叶水势与0—30 cm平均土壤含水量之间显著相关,当土壤水分含量较低时,春小麦和豌豆叶水势与耕层土壤含水量的相关性达极显著水平。与传统耕作(T)相比,免耕+秸秆覆盖(NTS)、免耕+地膜覆盖(NTP)、免耕(NT)、传统耕作+秸秆还田(TS)、地膜覆盖(TP)5种保护性耕作措施能不同程度的提高作物叶水势、叶片相对含水量和作物产量,其中免耕+秸秆覆盖(NTS)的优势最明显。  相似文献   
644.
 在适宜土壤水分(70%θf),中度干旱(55%θf)和严重干旱(40%θf)3种土壤水分条件下研究杨树(Populus simonii)的耗水特性和水分利用特征。结果表明,随着土壤含水量的下降,杨树叶水势、相对含水量(RWC)、生长速率、光合速率及单叶水分利用效率(WUE)显著下降;在适宜水分和中度干旱条件下,杨树的快速生长和干物质迅速积累时期主要集中在5~6月,严重干旱下快速生长时期和干物质积累主要集中在5月;杨树总耗水量和总生物量的大小顺序为:适宜水分>中度干旱>严重干旱;WUE则表现出中度干旱下最高,严重干旱下最低;杨树在适宜水分下的日、旬、月耗水量明显高于中度干旱和严重干旱处理;杨树在适宜水分、中度干旱和严重干旱条件下的最高耗水月分别在6~7月,最高旬耗水量分别在7月中旬、上旬和6下旬;在中度水分亏缺和严重水分亏缺下的最高耗水日出现的时间比适宜水分下的最高耗水日提前1~2个月以上。一天中的最大耗水高峰随着杨树生育期和土壤含水量的不同而有明显差异。研究结果表明,杨树不具备耐旱植物的特征,因此在黄土高原缺水地区不适宜大面积栽植,只能用于水分条件较好的立地条件下造林。  相似文献   
645.
黄土旱塬区苹果园土壤水分动态   总被引:5,自引:0,他引:5  
选取黄土旱塬区盛果期果园,于2009-2013年对0~500 cm土层土壤含水量进行连续监测,了解其土壤水分动态变化规律.结果表明: 平水年,苹果园耗水主要发生在0~300 cm土层;年降水量小于400 mm时,果树主要消耗300 cm以下土层土壤水分;受年降水量和苹果耗水的共同影响,200~300 cm土层是土壤水分的最大波动层;苹果园4-6月底季节性干旱明显,土壤水分的蓄积主要发生在7-10月中旬,该期的土壤蓄水能有效缓解下一年的春季干旱.  相似文献   
646.
硅是地壳中含量仅次于氧的元素,植物不可能在无硅的环境中生长.通过盆栽试验研究了不同土壤水分条件下硅对紫花苜蓿(Medicago sativa)水分利用效率及产量构成要素的影响.结果表明,在土壤含水量为田间最大持水量的35%和80%的条件下,硅对紫花苜蓿水分利用效率和生物量没有显著影响,而在土壤含水量为田间最大持水量的50%和65%的条件下,硅显著提高了紫花苜蓿水分利用效率和生物量(p<0.05),紫花苜蓿水分利用效率的增幅分别为35%和20%,主要途径为降低叶片蒸腾速率;紫花苜蓿生物量增幅分别为41%和14%,主要通过促进分枝和株高生长,而不受单枝生物量的影响.因此硅对紫花苜蓿水分利用效率和生物量的有益作用与其生长环境中的土壤水分条件密切相关.  相似文献   
647.
灌溉施肥水平对盐渍化农田水盐分布及玉米产量的影响   总被引:2,自引:0,他引:2  
蒋静  翟登攀  张超波 《生态学杂志》2019,30(4):1207-1217
水资源缺乏和过量施肥影响着干旱半干旱盐渍化地区农业的发展.研究不同灌溉和施肥量对土壤水盐分布和青贮玉米产量的影响,可为该区确定适宜的灌溉和施肥量提供依据.试验于2015和2016年在大同盆地的盐渍化农田进行,设3种灌溉水平:土壤水分上限分别为田间持水率(θf)的100%(W1)、90%(W2)和80%(W3),根据各处理灌溉前的土壤平均实际含水率计算灌水量;2015年设4种施肥水平:900(F1)、750(F2)、600(F3)和450 kg·hm-2(F4),2016年设F1、F2和F3共3种.试验用化肥为缓释复合肥,总养分含量48%,其中N:P2O5:K2O的比例为30:12:6.结果表明: 土壤表层电导率随施肥量的增加而增大,施肥水平对平均电导率(EC)和含水率的影响在0~10 cm土层显著,与F1相比,F2的0~10 cm土层平均EC在2015年和2016年分别降低25.6%~42.7%和6.4%~7.7%.20~80 cm土层的水分含量随施肥量的增加而降低,与F1相比,2015年F2、F3和F4处理20~80 cm土层平均土壤含水率分别增加5.9%、16.7%和16.7%,2016年F2和F3分别增加13.3%和16.7%.产量在两年中均表现为F1和F2高于F3和F4,W3低于W1和W2; F1和F2的产量差异不明显;与W1相比,W2的产量减少低于15 %.因此,施复合肥600~750 kg·hm-2(氮肥含量180~270 kg·hm-2),且灌溉水平为W1和W2时,可以保证该地区盐渍化土壤种植玉米获得较高的产量,并且不会造成根系层的盐分积累.  相似文献   
648.
王琦  张恩和  李凤民 《生态学报》2004,24(8):1816-1819
于 2 0 0 2年 4月~ 8月在兰州大学干旱农业生态榆中试验站进行研究 ,在平地上形成沟垄相间的微地形 ,采用 3种沟垄比和两种下垫面材料 ,垄作为径流区 ,沟作为集水区 (沟内不种任何作物 )。采用平均产流率法分析了不同垄型集水面的集水效率 ,结果表明 ,膜垄的平均集水效率为 90 % ,土垄的平均集水效率为 16 .8% ;通过对不同垄型集水面垄中、沟边、沟中的土壤水分进行比较发现 ,对于膜垄在集雨的各个时期沟中的土壤含水量高于垄中 ,沟边的土壤含水量介于沟中和垄中土壤含水量两者之间。如 7月 14日测定 ,沟中、沟边和垄中 0~ 2 0 0 cm土层土壤平均含水量分别为 10 .39%、10 .2 4 %和 9.4 2 % ;对于土垄 ,在集雨前期和集雨中期 ,沟中和沟边的土壤含水量相差不大 ,沟中和沟边的土壤含水量均低于垄中的土壤含水量 ,表现出和膜垄完全不一样的特性 ,如 7月 14日测定 ,沟中、沟边和垄中 0~ 12 0 cm土层土壤平均含水量分别为 8.98%、8.6 8%和 10 .0 3% ,在集雨后期 ,沟边和沟中的土壤含水量大于垄中土壤含水量 ,如 8月 13日测定 ,沟中、沟边和垄中 0~ 12 0 cm土层土壤平均含水量分别为 9.76 % A、9.38% B和 7.94 % C,该试验表明土垄在集雨后期 ,在集雨和土壤水分分配方面表现出和膜垄的相似的特性  相似文献   
649.
倪健  张新时 《Acta Botanica Sinica》1997,39(12):1147-1159
试图利用大气年平均气温、年降水量、可能蒸散和土壤水分平衡之间的关系建立一个水热积指数,并应用年平均气温、年土壤水分盈亏值和水热积指数三个气候变量来限定植物群落组合,构成一个圆形的生命-气候图式。根据全国689个标准气象台站的气候资料,计算了中国8个植被地带和26个亚地带的年平均气温、年土壤水分盈亏和水热积指数,绘制了各气候指标在中国的分布图及散点图,较好表现了中国各植被类型与气候指标的关系和格局,包括寒温带针叶林、冷温带针阔叶混交林、暖温带落叶阔叶林、亚热带常绿阔叶林、热带雨林和季雨林、温带草原、温带荒漠、青藏高原高寒植被,并得到了中国各植被地带的气候指标范围及界限。通过分析可以看出,年平均气温的等值线较好地反映了中国大陆的热量梯度,经度和纬度方向的区分均较明显;年土壤水分盈亏曲线的等值线则比较零乱;综合了热量和水分差异的水热积指数等值线与热量梯度和水分梯度均有一定的对应性,与植被类型的对应也较好。这是在宏观尺度上进行的植被与气候关系研究的一种尝试。  相似文献   
650.
半干旱区垄沟集雨系统点尺度土壤水分动态随机模拟   总被引:1,自引:0,他引:1  
尹鑫卫  王琦  李晓玲  吴雪 《生态学报》2019,39(1):320-332
为揭示土壤水分动态对半干旱区垄沟集雨系统水文和生态过程的影响机理,基于Laio土壤水分动态随机模型(Laio模型),利用中国气象局定西干旱气象与生态环境试验基地2012—2013年垄沟集雨燕麦生长季根系层土壤水分观测数据及2000—2015年日降水资料,分析不同覆盖材料(生物可降解膜、普通塑料膜和土壤结皮)和不同沟垄比(30∶60,45∶60和60∶60cm)对生长季燕麦根系层土壤水分动态的影响,研究点尺度土壤水分概率密度函数特征,并对模型涉及参数进行敏感性分析。结果表明:研究区年降水的季节分配极不均匀,主要集中在5—10月份,占总降雨次数的66.6%;年降雨量的85.32%来源于10 mm的降雨,以暴雨为主;近16年研究区降水量呈缓慢增长趋势。生物可降解膜垄(BMR)、普通地膜垄(CMR)和土垄(SR)临界产流降雨量分别为1.35、0.95 mm和5.31 mm,平均集水效率分别为87.892%、94.203%和27.488%;在燕麦生长季,BMR和CMR的土壤含水量显著大于SR,SR的土壤含水量显著大于传统平作,各处理土壤含水量均服从正态分布;通过Laio模型模拟得到的各处理土壤水分概率密度函数的曲线特征(峰值及其位置、90%置信区间)及数字特征(期望、方差)与观测结果基本一致,CM指数均大于0.5,且可将集雨垄径流量作为单次降水的随机事件处理,说明该模型可应用于垄沟集雨系统土壤水分概率密度函数的模拟,为半干旱区农田水分高效利用管理提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号