首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   6篇
  国内免费   57篇
  2023年   6篇
  2022年   12篇
  2021年   10篇
  2020年   17篇
  2019年   12篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   6篇
  2010年   8篇
  2009年   26篇
  2008年   13篇
  2007年   19篇
  2006年   17篇
  2005年   10篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
排序方式: 共有230条查询结果,搜索用时 406 毫秒
81.
根据桂花(Osmanthus fragrans)品种的形态特征, 结合AFLP分子标记, 对部分桂花栽培品种进行了遗传多样性分析。结果表明, 桂花品种之间存在着较为丰富的遗传多样性, AFLP分子标记检测到的多态性条带占总扩增条带的57.46%。 根据桂花品种的主要性状特征, 利用数值分类法对其进行分类, 并用UPGMA法对AFLP结果进行聚类分析, 结果均显示桂林地区的桂花品种存在明显的区域性, 花色可以作为重要的分类标准, 同时对桂花品种的分类系统进行了探讨。  相似文献   
82.
83.
84.
王磊  胡楠  张彤  丁圣彦 《生态学报》2007,27(9):3630-3636
选用河南省大面积种植的大豆品种豫豆29作为实验材料,通过研究逐步干旱和旱后复水条件下大豆叶片光合、叶绿素荧光等指标随土壤水分的动态变化规律,以期为大豆的水分高效利用提供理论依据。研究发现,在土壤相对含水量高于46.5%时,虽然随着土壤相对含水量的下降,豫豆29仍可以保持它的叶片水分状态;豫豆29的叶片净光合速率在土壤水分中等条件下最大,在土壤相对含水量为64.3%时,它比对照组高出11.2%(P<0.01);在实验的第3d,处理组的土壤相对含水量降为46.5%,叶片水势与对照组相比降低了7.2%(P>0.05),净光合速率为对照组的89.6%(P<0.05),但气孔导度却迅速下降为对照组的44.7%(P<0.01),这说明与叶片的光合和水分状况相比,豫豆29的气孔对土壤水分的匮缺更加敏感。复水后,豫豆29叶片的水势、净光合速率、气孔导度和叶绿素荧光等值都可以得到迅速的恢复,并在实验的最后接近对照组的水平,这表明豫豆29的叶片光合在水分胁迫解除后有迅速恢复的能力。  相似文献   
85.
Simulating multiple linked elemental cycles is a frontier in the field of biogeochemistry. The Generalized Algorithm for Nutrient, Growth, Stoichiometric and Thermodynamic Analysis (GANGSTA) is a software framework that automates the instantiation of formalized, user-defined conceptual models of linked elemental cycles as simulation model code. The GANGSTA employs first principles of stoichiometry and thermodynamics to generate models that simulate any suite of elemental cycles, compounds, metabolic processes, and microorganisms. Results demonstrated, e.g., that simulating the oxygen (O) cycle, rather than oxic versus anoxic conditions, fundamentally altered carbon (C) and nitrogen (N) cycling - despite holding the compounds and processes involved in the C and N cycles constant. Additionally, incorporating the sulfur (S) cycle substantively changed C and N cycling, largely via shifts in the O cycle. Thus, emergent dynamics from GANGSTA-derived models can aid in the development of hypotheses to describe the specific mechanisms of interdependence among linked elemental cycles.  相似文献   
86.
Pinus brutia var. pityusa (Steven) Silba (Calabrian pine) is considered a vulnerable species because of reductions in its population sizes linked to habitat decline in recent decades. Global warming alongside the collateral modification of precipitation regimes may markedly affect the distribution ranges of this species.In this dendroecological study, we identified the most influential climatic factors affecting the radial growth of P. brutia on the northern and eastern coasts of the Black Sea among the northern refugia of this species. Chronologies from five sites located on the Crimea Peninsula and the Caucasian coast and exposed to varying climatic conditions were used in this analysis. The study of environmental factors controlling the growth of P. brutia trees in the coastal populations of Crimea and the Caucasus revealed that within the longitudinal transect, which encompasses a specific range of climatic conditions, correlations between climate and the growth of P. brutia under analogous orographic conditions are similar.Aridisation of the dry Crimean climate in 1981–2012 led to an increase in the tree growth response. In the same period, populations of P. brutia trees growing in the subtropical climate of the Black Sea coast exhibited a weakened growth response to the point of disappearance. The northern populations of P. brutia, which are at the climatic limit of the species’ distribution, are exposed to a high risk of increasing climate aridisation. Our findings could provide useful information for further research on the effects of climate change on Black Sea coastal forest ecosystems.  相似文献   
87.
88.
Tree-ring measurements are a primary quantitative tool used in numerous scientific disciplines. Some species, however, exhibit morphological complexities leading to significant uncertainty in these measurements. Hawaiian Sandalwood (Santalum paniculatum) stems, for example, often develop asymmetric growth features that hinder tree-ring measurements. These features include faint-ring boundaries and wedging rings which disappear in portions of the cross-section. In this work we a use a novel two-dimensional transect methodology and our own open-source software, svg-dendro, to analyze particularly difficult cross-sections. Our method accomplishes this by first tracing all rings by hand and automatically generating a user-specified number of transects. On average, these traced measurements had more sensitivity to tree-ring variability without losing important equivalencies with the traditional binocular stereomicroscope technique (e.g., radii, skewness) as indicated by greater mean variance for ring number, mean tree-ring width, and standard deviation. All S. paniculatum samples had ring wedging, where certain sides of the stem had many locally absent tree rings but to different intensities. The new technique allows us to analyze the shift from complete rings with little to no wedging to rings with more wedging starting between the 19th and 40th ring, where deep stem lobes begin forming. The new method also reveals the difficulty in measuring these trees, as the wedging creates multiple lobes with different visible ring counts. This research suggests that this two-dimensional methodology would be best applied to non-circular trees with fewer incomplete rings, supporting the importance of species and population selection. Overall, we have developed an efficient and flexible means to measure otherwise unmeasurable growth features in tree samples through representing tree-ring boundaries as curves and developing software to sort and map transects.  相似文献   
89.
Responses of tree growth to climate are usually spatially heterogeneous. Besides regionally varying external environments, species specificity is a crucial factor in determining said spatial heterogeneity. A better understanding of this species specificity would improve our estimations of the warming effects on forests. In this study, we selected two widely-distributed boreal conifers, Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica), to compare their growth-climate responses, including long-term growth-climate correlations and short-term growth resilience to drought. We sampled 160 trees and 481 tree-ring cores from the two species in two pure and two mixed forests, located in the Greater Khingan Range, northeast China. We found that Dahurian larch was generally positively correlated with spring temperature and negatively correlated with summer temperature. In contrast, Mongolian pine was more sensitive to summer moisture. Our results suggest that the main climatic limitations were low spring temperatures for Dahurian larch and summer moisture deficits for Mongolian pine. Dahurian larch represented higher growth resistance to drought, while Mongolia pine represented higher recovery. Based on this, we inferred that Dahurian larch was more vulnerable to extreme droughts, while Mongolian pine was more vulnerable to frequent droughts. We also demonstrated the effects of forest type on growth-climate responses. The negative effects of summer temperatures on Mongolian pine seemed to be more significant in mixed forests. As warming continued, Mongolian pine in this area would suffer severer moisture deficits, especially when coexisting with Dahurian larch. Our results suggest that Dahurian larch gained an advantage in the competition with Mongolian pine during high moisture stress. Driven by the warming trends, the species specificity in growth response would ultimately promote the separation of the two species in distribution. This study will help improve our estimations of the warming effects on forests and develop more species-targeted forest management practices.  相似文献   
90.
Twelve low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe the molecular lesion likely to be responsible for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at amino acid 168, having Phe (TTC) instead of Ser (TCC), was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5’-flanking regions in 12 LR mutants of T. harzianum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号