首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  1997年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.  相似文献   
2.
3.
Despite advances in surgery, radiotherapy, and chemotherapy, the overall survival rates for patients with squamous cell carcinoma of the head and neck (SCCHN) have not changed over the last decades. Clearly, novel therapeutic strategies are needed for this cancer, which is highly immunosuppressive. Therefore, biologic therapies able to induce and/or up-regulate antitumor immune responses could represent a complementary approach to conventional treatments. Because patients with SCCHN are frequently immunocompromised due to the elimination or dysfunction of critical effector cells of the immune system, it might be necessary to restore these immune functions to allow for the generation of more effective antitumor host responses. Simultaneously, to prevent tumor escape, it might be necessary to alter attributes of the malignant cells. The present review summarizes recent advances in the field of immunotherapy of SCCHN, including techniques of nonspecific immune stimulation, the use of monoclonal antibodies, advances in adoptive immunotherapy and genetic engineering, as well as anticancer vaccines. These biologic therapies, alone or in combination with conventional treatment, are likely to develop into useful future treatment options for patients with SCCHN.  相似文献   
4.
An updated inventory of about 150 human DNA repair genes is described. The compilation includes genes encoding DNA repair enzymes, some genes associated with cellular responses to DNA damage, and other genes associated with genetic instability or sensitivity to DNA damaging agents. The updated human DNA repair genes table (http://www.cgal.icnet.uk/DNA_Repair_Genes.htmlhttp://www.cgal.icnet.uk/DNA_Repair_Genes.html) is a research and reference tool that directly links to several databases: Gene Cards, Online Mendelian Inheritance in Man, the NCBI MapViewer for chromosome position, and the NCBI Entrez database for the reference nucleotide sequence. This article discusses the approximately 25 genes added, since the original version of the table was first produced in 2001, and some other revisions.  相似文献   
5.
Clarkson SG  Wood RD 《DNA Repair》2005,4(10):1068-1074
Using the human XPD (ERCC2) gene as an example, we evaluate the suggestion that polymorphisms in DNA repair genes lead to decreased DNA repair capacity and to increased cancer susceptibility. This intuitively appealing idea provides the rationale for a large number of studies that have attracted much attention from scientists, clinicians and the general public. Unfortunately, most of this work presupposes that a functional effect has been established for the DNA repair gene polymorphisms under study. For XPD, there is no credible evidence for any effect on DNA repair of the two common polymorphisms leading to p.D312N and p.K751Q amino acid variations, and evolutionary analyses strongly predict that both polymorphisms are benign. Current evidence suggests no causal relationship between XPD polymorphisms, reduced DNA repair and increased cancer risk. We do not believe that more studies of the same kind will be useful. Instead, we suggest a combination of several other approaches, which up to now have been used in only a sporadic way, to examine more rigorously the possibility that phenotypic differences are associated with polymorphisms in other DNA repair genes.  相似文献   
6.
DNA damage repair is an important cell function for genome integrity and its deregulation can lead to genomic instability and development of malignancies. Sumoylation is an increasingly important ubiquitin-like modification of proteins affecting protein stability, enzymatic activity, nucleocytoplasmic trafficking, and protein-protein interactions. In particular, several important DNA repair enzymes are subject to sumoylation, which appears to play a role in copping with DNA damage insults. Recent reports indicate that Ubc9, the single SUMO E2 enzyme catalyzing the conjugation of SUMO to target proteins, is overexpressed in certain tumors, such as lung adenocarcinoma, ovarian carcinoma and melanoma, suggestive of its clinic significance. This review summarizes the most important DNA damage repair pathways which are potentially affected by Ubc9/SUMO and their role in regulating the function of several proteins involved in the DNA damage repair machinery.  相似文献   
7.
Interactions between dendritic cells (DCs) and T cells play a pivotal role in the regulation and maintenance of immune responses. In cancer patients, various immunological abnormalities have been observed in these immune cells. Here, we investigated proportions and the phenotype of DCs and the cytokine profile of T-cell subsets in the peripheral blood of patients with squamous cell carcinoma of the head and neck (SCCHN), using multicolor flow cytometry. The percentage of myeloid (CD11c+), but not plasmacytoid (CD123+) DCs, was significantly lower (P<0.05) and expression of HLA-DR was significantly decreased in total and myeloid DCs of cancer patients compared to healthy donors. Simultaneous analyses of T-cell subsets in the patients’ circulation showed significantly increased proportions of CD4+ T cells expressing Th1 and Th2 cytokines after ex vivo stimulation without any skewing in the Th1/Th2 ratio. The relative level of HLA-DR expression on myeloid or total DCs positively correlated with the Th1/Th2 ratio (P<0.01), and the proportion of total circulating DCs was inversely correlated with that of regulatory CD4+CD25+ T cells (P<0.01). These results suggest that the decreased proportion of circulating DCs and decreased HLA-DR expression in DCs may have a major impact on systemic immune responses in patients with SCCHN.  相似文献   
8.
Agouti和Agouti相关蛋白的一些生物学内涵   总被引:2,自引:0,他引:2  
Agouti 有多方面的意义.首先,它是分属几种不同物种的哺乳动物的俗称.其次,它是一些啮齿类动物的属名.第三,它代表了一种啮齿类动物特有的毛色.第四,它是一个与黑素皮质素受体信号转导途径的调控有关,存在于从人(Homo sapiens)到啮齿类动物,乃至斑马鱼(Danio rerio)的一个特定基因的名称,又是该基因产生的一种特定信号蛋白的名称.Agouti和Agouti相关蛋白是肿瘤、肥胖与糖尿病等人类疾病的研究热点之一.Agouti黄色肥胖小鼠最近成了表观遗传学研究的一个重要模型动物.本文阐述并区分了与agouti有关的一些重要概念与科学术语,并综述了相关领域的研究进展.  相似文献   
9.
10.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号