首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   4篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   33篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   10篇
  2001年   12篇
  2000年   10篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有279条查询结果,搜索用时 531 毫秒
121.
This study examines the representativeness of low-temperature hydrothermal fluid samples with respect to their chemical and microbiological characteristics. Within this scope, we investigated short-term temporal chemical and microbial variability of the hydrothermal fluids. For this purpose we collected three fluid samples consecutively from the same spot at the Clueless field near 5°S on the southern Mid-Atlantic Ridge over a period of 50 min. During sampling, the temperature was monitored online. We measured fluid chemical parameters, characterized microbial community compositions and used statistical analyses to determine significant differences between the samples. Overall, the three fluid samples are more closely related to each other than to any other tested habitat. Therefore, on a broad scale, the three collected fluid samples can be regarded as habitat representatives. However, small differences are apparent between all samples. One of the Clueless samples even displayed significant differences ( P -value < 0.01) to the other two Clueless samples. Our data suggest that the observed variations in fluid chemical and microbial compositions are not reflecting sampling artefacts but are related to short-term fluid variability due to dynamic subseafloor fluid mixing. Recorded temporal changes in fact reflect spatial heterogeneity found in the subsurface as the fluid flows through distinctive pathways. While conservative elements (Cl, Si, Na and K) indicate variable degrees of fluid-seawater mixing, reactive components, including Fe(II), O2 and H2S, show that chemical and microbial reactions within the mixing zone further modify the emanating fluids on short-time scales. Fluids entrain microorganisms, which modify the chemical microenvironment within the subsurface biotopes. This is the first study focusing on short-term microbial variability linked to chemical changes in hydrothermal fluids.  相似文献   
122.
123.
124.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   
125.
126.
The impact of leaf vein cavitation and embolism on stomatal response and leaf hydraulic conductance was studied in potted plants of sunflower subjected to water limitation. Plant dehydration was achieved either by cutting well‐watered plants near their base and leaving them dehydrating in air or by depriving intact plants of irrigation. The vein cavitation threshold (ΨCAV) was estimated in terms of ultrasound acoustic emissions (UAE) from the leaf blade versus leaf water potential (ΨL). This was found to be the same (ΨCAV ≈ ?0.6 MPa) for leaves of both cut and intact plants where stomata began to close in coincidence with starting vein cavitation. Vein embolism was detected by infiltrating leaves at different ΨL with 0.7 mM fluorescein and measuring the percentage fluorescent area as percentage of total leaf surface area. A distinct loss of vein functionality (up to 50%) was found to occur in leaves at progressively decreasing ΨL, starting when leaves reached ΨCAV. A linear positive relationship with high statistical significance was found to exist between gL and percentage leaf fluorescent area, thus indicating that stomata were sensitive to vein embolism. The hydraulic conductance (KL) of the leaf was affected by leaf dehydration less than expected (KL decreased by about 20% between near full turgor and ΨL = ?1.3 MPa). When the extravascular leaf compartment was excluded either by killing cells by immersing leaves in 70% ethanol or by cutting the main leaf venous system through to allow flow to bypass it, KL turned out to increase 5.5 times, thus suggesting that the high dominance of the hydraulic resistance of the extravascular leaf compartment over the total leaf resistance might buffer or mask possibly large local changes in KL inducing stomatal closure.  相似文献   
127.
Since its original formulation by Janzen in 1966, the hypothesis that obligate ant‐plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 ant‐plant and non‐ant‐plant species of the three unrelated genera Leonardoxa,Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti‐herbivore defence).
Condensed tannin content in three of four populations of the non‐myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant‐plants and non‐ant‐plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of ‘trade‐offs’ between indirect, biotic and direct, chemical defence in ant‐plants.
A critical re‐evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well‐established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade‐off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants’ ant mutualists), or whether the pattern of dramatically reduced direct defence of ant‐plants is caused by classes of defensive compounds not yet studied.  相似文献   
128.
Type IV pili (T4P) are surface structures that undergo extension/retraction oscillations to generate cell motility. In Myxococcus xanthus , T4P are unipolarly localized and undergo pole-to-pole oscillations synchronously with cellular reversals. We investigated the mechanisms underlying these oscillations. We show that several T4P proteins localize symmetrically in clusters at both cell poles between reversals, and these clusters remain stationary during reversals. Conversely, the PilB and PilT motor ATPases that energize extension and retraction, respectively, localize to opposite poles with PilB predominantly at the piliated and PilT predominantly at the non-piliated pole, and these proteins oscillate between the poles during reversals. Therefore, T4P pole-to-pole oscillations involve the disassembly of T4P machinery at one pole and reassembly of this machinery at the opposite pole. Fluorescence recovery after photobleaching experiments showed rapid turnover of YFP–PilT in the polar clusters between reversals. Moreover, PilT displays bursts of accumulation at the piliated pole between reversals. These observations suggest that the spatial separation of PilB and PilT in combination with the noisy PilT accumulation at the piliated pole allow the temporal separation of extension and retraction. This is the first demonstration that the function of a molecular machine depends on disassembly and reassembly of its individual parts.  相似文献   
129.
The Gram-negative metal ion-reducing bacterium Shewanella oneidensis MR-1 is motile by means of a single polar flagellum. We identified two potential stator systems, PomAB and MotAB, each individually sufficient as a force generator to drive flagellar rotation. Physiological studies indicate that PomAB is sodium-dependent while MotAB is powered by the proton motive force. Flagellar function mainly depends on the PomAB stator; however, the presence of both stator systems under low-sodium conditions results in a faster swimming phenotype. Based on stator homology analysis we speculate that MotAB has been acquired by lateral gene transfer as a consequence of adaptation to a low-sodium environment. Expression analysis at the single cell level showed that both stator systems are expressed simultaneously. An active PomB–mCherry fusion protein effectively localized to the flagellated cell pole in 70–80% of the population independent of sodium concentrations. In contrast, polar localization of MotB–mCherry increased with decreasing sodium concentrations. In the absence of the Pom stator, MotB–mCherry localized to the flagellated cell pole independently of the sodium concentration but was rapidly displaced upon expression of PomAB. We propose that selection of the stator occurs at the level of protein localization in response to sodium concentrations.  相似文献   
130.
Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号