首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181140篇
  免费   147805篇
  国内免费   29821篇
  2019年   3395篇
  2018年   3365篇
  2016年   3539篇
  2015年   4061篇
  2014年   4548篇
  2013年   5283篇
  2012年   5907篇
  2011年   6283篇
  2010年   6617篇
  2009年   11618篇
  2008年   6515篇
  2007年   6394篇
  2006年   5319篇
  2005年   5136篇
  2004年   5020篇
  2003年   4626篇
  2002年   5313篇
  2001年   13912篇
  2000年   11560篇
  1999年   13755篇
  1998年   10174篇
  1997年   10210篇
  1996年   9404篇
  1995年   9594篇
  1994年   8888篇
  1993年   8496篇
  1992年   12153篇
  1991年   11946篇
  1990年   12170篇
  1989年   11465篇
  1988年   10332篇
  1987年   9071篇
  1986年   8389篇
  1985年   7747篇
  1984年   5906篇
  1983年   4875篇
  1982年   4691篇
  1981年   4139篇
  1980年   3973篇
  1979年   4961篇
  1978年   4247篇
  1977年   4041篇
  1976年   3705篇
  1975年   3401篇
  1974年   3626篇
  1973年   3626篇
  1972年   3838篇
  1971年   3522篇
  1970年   3162篇
  1969年   3124篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
41.
42.
It is known that the reaction-center binding protein D1 in photosystem (PS) II is degraded significantly during photoinhibition. The D1 protein also cross-links covalently or aggregates non-covalently with the nearby polypeptides in PS II complexes by illumination. In the present study, we detected the adducts between the D1 protein and the other reaction-center binding protein D2 (D1/D2), the alpha-subunit of cyt b(559) (D1/cyt b(559)), and the antenna chlorophyll-binding protein CP43 (D1/CP43) by SDS/urea-polyacrylamide gel electrophoresis and Western blotting with specific antibodies. The adducts were observed by weak and strong illumination (light intensity: 50-5000 microE m(-2) s(-1)) of PS II membranes, thylakoids and intact chloroplasts from spinach, under aerobic conditions. These results indicate that the cross-linking or aggregation of the D1 protein is a general phenomenon which occurs in vivo as well as in vitro with photodamaged D1 proteins. We found that the formation of the D1/D2, D1/cyt b(559) and D1/CP43 adducts is differently dependent on the light intensity; the D1/D2 heterodimers and D1/cyt b(559) were formed even by illumination with weak light, whereas generation of the D1/CP43 aggregates required strong illumination. We also detected that these D1 adducts were efficiently removed by the addition of stromal components, which may contain proteases, molecular chaperones and the associated proteins. By two-dimensional SDS/urea-polyacrylamide gel electrophoresis, we found that several stromal proteins, including a 15-kDa protein are effective in removing the D1/CP43 aggregates, and that their activity is resistant to SDS.  相似文献   
43.
44.
The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.  相似文献   
45.
46.
47.
Voltage dependence of Na-Ca exchanger conformational currents.   总被引:3,自引:1,他引:2       下载免费PDF全文
E Niggli  P Lipp 《Biophysical journal》1994,67(4):1516-1524
Properties of a transient current (Icont) believed to reflect a conformational change of the Na-Ca exchanger molecules after Ca2+ binding were investigated. Intracellular Ca2+ concentration jumps in isolated cardiac myocytes were generated with flash photolysis of caged Ca2+ dimethoxynitrophenamine, and membrane currents were simultaneously measured using the whole-cell variant of the patch-clamp technique. A previously unresolved shallow voltage dependence of Icont was revealed after developing an experimental protocol designed to compensate for the photoconsumption of the caged compound. This voltage dependence can be interpreted to reflect the distribution of Na-Ca exchanger conformational states with the Ca2+ binding site exposed to the inside of the cell immediately before the flash. Analysis performed by fitting a Boltzmann distribution to the observed data suggests that under control conditions most exchanger molecules reside in states with the Ca2+ binding site facing the outside of the cell. Dialysis of the cytosol with 3',4'-dichlorobenzamil, an organic inhibitor of the Na-Ca exchange, increased the magnitude of Icont and changed the voltage dependence, consistent with a parallel shift of the charge/voltage curve. This shift may result from intracellular DCB interfering with an Na(+)-binding or Na(+)-translocating step. These observations are consistent with Icont arising from a charge movement mediated by the Na-Ca exchanger molecules after binding of Ca2+.  相似文献   
48.
Epstein-Barr virus transformed human lymphocytes despite the presence of up to 500 microM acyclovir [9-(2-hydroxyethoxymethyl)guanine], a viral DNA polymerase inhibitor. The transformed cells contained multiple Epstein-Barr virus genome copy numbers. Functional viral DNA polymerase is probably not required for cell transformation and the initial amplification of the viral genome.  相似文献   
49.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
50.
The nucleotide sequences of a partial cDNA and three pseudogenes of human cytochrome c were determined. The complete nucleotide sequences which encode human cytochrome c were constructed on the basis of one of the pseudogenes by in vitro mutagenesis. The constructed human cytochrome c was functionally expressed in Saccharomyces cerevisiae. The recombinant human cytochrome c was purified and characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号