首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   131篇
  国内免费   73篇
  2024年   1篇
  2023年   8篇
  2022年   9篇
  2021年   39篇
  2020年   33篇
  2019年   39篇
  2018年   38篇
  2017年   40篇
  2016年   48篇
  2015年   62篇
  2014年   67篇
  2013年   66篇
  2012年   97篇
  2011年   80篇
  2010年   46篇
  2009年   48篇
  2008年   46篇
  2007年   26篇
  2006年   44篇
  2005年   34篇
  2004年   38篇
  2003年   49篇
  2002年   32篇
  2001年   35篇
  2000年   25篇
  1999年   25篇
  1998年   13篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   14篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有1177条查询结果,搜索用时 125 毫秒
51.
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.  相似文献   
52.
Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV8) DNA is found consistently in nearly all classical, endemic, transplant, and AIDS-associated KS lesions, as well as in several AIDS-associated lymphomas. We have previously sequenced the genes for the highly variable open reading frame K1 (ORF-K1) protein from more than 60 different HHV8 samples and demonstrated that they display up to 30% amino acid variability and cluster into four very distinct evolutionary subgroups (the A, B, C, and D subtypes) that correlate with the major migrationary diasporas of modern humans. Here we have extended this type of analysis to six other loci across the HHV8 genome to further evaluate overall genotype patterns and the potential for chimeric genomes. Comparison of the relatively conserved ORF26, T0.7/K12, and ORF75 gene regions at map positions 0. 35, 0.85, and 0.96 revealed typical ORF-K1-linked subtype patterns, except that between 20 and 30% of the genomes analyzed proved to be either intertypic or intratypic mosaics. In addition, a 2,500-bp region found at the extreme right-hand side of the unique segment in 45 HHV8 genomes proved to be highly diverged from the 3,500-bp sequence found at this position in the other 18 HHV8 genomes examined. Furthermore, these previously uncharacterized "orphan" region sequences proved to encompass multiexon latent-state mRNAs encoding two highly diverged alleles of the novel ORF-K15 protein. The predominant (P) and minor (M) forms of HHV8 ORF-K15 are structurally related integral membrane proteins that have only 33% overall amino acid identity to one another but retain conserved likely tyrosine kinase signaling motifs and may be distant evolutionary relatives of the LMP2 latency protein of Epstein-Barr virus. The M allele of ORF-K15 is also physically linked to a distinctive M subtype of the adjacent ORF75 gene locus, and in some cases, this linkage extends as far back as the T0.7 locus also. Overall, the results suggest that an original recombination event with a related primate virus from an unknown source introduced exogenous right-hand side ORF-K15(M) sequences into an ancient M form of HHV8, followed by eventual acquisition into the subtype C lineage of the modern P-form of the HHV8 genome and subsequent additional, more recent transfers by homologous recombination events into several subtype A and B lineages as well.  相似文献   
53.
Staurosporine has been reported to cause arrest of cells in G1 phase at low concentration and in G2 phase at high concentration. This raises the question of why the effects of staurosporine on the cell cycle depend on the applied concentration. In order to verify these multiple functions of staurosporine in Meth-A cells, we used cyclin E as a landmark of G1/S transition, cyclin B as a landmark of G2/M transition and MPM2 as a hallmark of M phase. We found that staurosporine arrested cells in G1 phase at a low concentration (20 nM) and in G2/M phase at a high concentration (200 nM). However, 200 nM staurosporine increased the expression of cyclin B and cdc2 proteins, suggesting that the cells progressed through the G2/M transition, and increased the expression of MPM2 protein, indicating that the cells entered M phase. Moreover, 200 nM staurosporine increased the expression of p53 and p21 proteins and inhibited the expression of cyclin E and cdk2 proteins, suggesting that the cells were arrested in the G1 phase of the next cycle. Morphological observation showed similar results as well. These data suggest that the G2/M accumulation induced by 200 nM staurosporine does not reflect G2 arrest, but rather results from M phase arrest, followed by progression from M phase to the G1 phase of the next cycle without cytokinesis, and finally arrest of the cells in G1 phase.  相似文献   
54.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   
55.
(S)-Hydroxynitrile lyase from Manihot esculenta (MeHNL) was shown for the first time to be able to catalyze the enantioselective transcyanation of acetyltrimethylsilane (ATMS) with acetone cyanohydrin to form (S)-2-trimethylsilyl-2-hydroxyl-propionitrile in an aqueous/organic biphasic system. To better understand the reaction, various influential variables were examined. The most suitable organic phase, optimal buffer pH, aqueous phase content, shaking rate, temperature, concentration of ATMS, acetone cyanohydrin and crude enzyme were diisopropyl ether (DIPE), 5.4, 13% (v/v), 190 rpm, 40°C, 10 mM, 20 mM, and 35 U/ml, respectively, under which the initial reaction rate, substrate conversion and product enantiomeric excess (e.e.) were 19.5 mM/h, 99.0% and 93.5%, respectively. A comparative study demonstrated that silicon atoms in the substrate had a great effect on the reaction, and that ATMS was a much better substrate for MeHNL than its carbon analogue 3,3-dimethyl-2-butanone (DMBO) with respect to the initial reaction rate, substrate conversion and product e.e. MeHNL has greater affinity towards ATMS than its carbon analogue as indicated by the much lower Km. The activation energy of MeHNL-catalyzed transcyanation of ATMS was also markedly lower than that of DMBO. The silicon effect on the reaction was rationalized on the basis of the special characteristics of silicon atoms and the catalytic mechanism of MeHNL.  相似文献   
56.
Urotensin II is among the most potent vasoactive hormones known and the urotensin II (UTS2) gene is localized to 1p36-p32, one of the regions reported to show possible linkage with type 2 diabetes in Japanese. When we surveyed genetic polymorphisms in the UTS2 and urotensin II receptor (GPR14) gene, we identified two SNPs with amino acid substitutions (designated T21M and S89N and an SNP in the promotor region (-605G>A) of the UTS2 gene, and two SNPs in the non-coding region of the GPR14 gene. We then studied these three SNPs in the UTS2 gene and two SNPs in the GPR14 gene in 152 Japanese subjects with type 2 diabetes mellitus and two control Japanese populations. The allele frequency of 89N was significantly higher in type 2 diabetic patients than in both elderly normal subjects (P = 0.0018) and subjects with normal glucose tolerance (P = 0.0011), whereas the allele frequency of T21M and -605G>A in the UTS2 gene and those of two SNPs in the GPR14 gene were essentially identical in these three groups. Furthermore, in the subjects with normal glucose tolerance, 89N was associated with significantly higher insulin levels on oral glucose tolerance test, suggesting reduced insulin sensitivity in subjects with 89N. These results strongly suggest that subjects with S89N in the UTS2 gene are more insulin-resistant and thus more susceptible to type 2 diabetes mellitus development.  相似文献   
57.
Zong XM  Zeng YM  Xu T  Lü JN 《生理学报》2003,55(5):565-570
实验应用开阔法、组织病理学方法、原位末端标记(in situ terminal deoxynucleotidyl transferase-metliated de-oxy-UTP mick end labeling,TUNEL)法及免疫组织化学等方法,探讨多巴胺D1、D2受体激动剂和拮抗剂对沙土鼠前脑缺血/再灌注损伤海马CA1区神经元凋亡及凋亡相关基因bcl-2、bax表达的影响。结果显示:前脑缺血5min可引起沙土鼠探索活动增加;再灌注3d,海马CA1区约95%的锥体细胞凋亡;再灌注7d,海马CA1区仅残存约2%—7%的存活锥体细胞;前脑缺血5min可抑制bcl-2的表达并诱导bax表达增高;预先应用D2受体激动剂培高利特可减轻缺血后沙土鼠行为学异常、抑制海马CA1区锥体细胞凋亡、提高锥体细胞存活数、显著诱导bcl-2的表达并抑制bax的表达。预先应用SKF38393、SCH23390及螺哌隆对以上结果无明显影响。实验结果提示,培高利特具有确切的脑保护作用,诱导bcl-2并抑制bax的表达可能是其脑保护作用机制之一。  相似文献   
58.
59.
Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.  相似文献   
60.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号