首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5465篇
  免费   527篇
  国内免费   644篇
  2024年   12篇
  2023年   82篇
  2022年   116篇
  2021年   304篇
  2020年   218篇
  2019年   261篇
  2018年   207篇
  2017年   153篇
  2016年   203篇
  2015年   360篇
  2014年   388篇
  2013年   357篇
  2012年   490篇
  2011年   454篇
  2010年   298篇
  2009年   266篇
  2008年   260篇
  2007年   302篇
  2006年   266篇
  2005年   211篇
  2004年   188篇
  2003年   179篇
  2002年   175篇
  2001年   109篇
  2000年   82篇
  1999年   62篇
  1998年   53篇
  1997年   61篇
  1996年   56篇
  1995年   51篇
  1994年   48篇
  1993年   42篇
  1992年   44篇
  1991年   24篇
  1990年   28篇
  1989年   39篇
  1988年   24篇
  1987年   16篇
  1986年   24篇
  1985年   14篇
  1984年   9篇
  1983年   13篇
  1982年   9篇
  1981年   10篇
  1980年   13篇
  1979年   12篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1971年   6篇
排序方式: 共有6636条查询结果,搜索用时 250 毫秒
111.
麦红吸浆虫Sitodiplosis mosellana(Gehin)是一种世界性的小麦害虫。为获得其转录组信息,本研究采用新一代高通量测序技术Illumina HiSeq TM 2000对麦红吸浆虫成虫转录组进行测序。共获得转录组样本数据量为27.88 G,经分析共获得59257个Unigenes,总长度49861164 bp,最短20 bp,最长29282 bp,平均长度841 bp。将Unigenes序列与NR、NT、Swiss-Prot、KEGG、GO和KOG数据库进行比对(e≤10-10),共获得95029个结果。通过GO功能分类,共有19584个Unigenes在GO数据库中细胞组分、分子功能和生物学过程等3大类50个功能组中找到对应。与KOG数据库进行比对,共有11279个麦红吸浆虫Unigenes被注释,按功能大致可分为26类。通过KEGG pathways分析,共有9110个麦红吸浆虫Unigenes被注释,分别归属于细胞进程、环境信息进程、遗传信息进程、新陈代谢和有机体系统5大类代谢途径,主要包括细胞生长与死亡、细胞运动、信号转导、能量代谢等32类代谢途径。CDS预测发现30088条序列可被编码,占全部基因的50.78%。SSR位点查找发现,在59257个Unigenes中共找到36323个SSR位点,发生率为61.30%。本研究获得的巨大的麦红吸浆虫转录组信息,为麦红吸浆虫的功能基因挖掘提供了重要的信息资源。  相似文献   
112.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   
113.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   
114.
Wang  Haili  Xu  Yuanyuan  Xu  Aiqing  Wang  Xinghua  Cheng  Lijun  Lee  Sharen  Tse  Gary  Li  Guangping  Liu  Tong  Fu  Huaying 《Journal of physiology and biochemistry》2020,76(4):637-653
Journal of Physiology and Biochemistry - Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the...  相似文献   
115.
Phosphodiesterase (PDE)‐mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3‐isobutyl‐1‐methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV‐stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double‐strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV‐stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.  相似文献   
116.
DNA‐binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5‐fluorouracil (5‐FU)‐resistant and oxaliplatin (L‐OHP)‐resistant colorectal cancer (CRC) cells. We found that 5‐FU and L‐OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5‐FU and L‐OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5‐FU and SW620/L‐OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5‐FU and L‐OHP to SW620/5‐FU and SW620/L‐OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β‐catenin pathway that induced by 5‐FU stimulation in SW620/5‐FU cells. Activation of the Wnt/β‐catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5‐FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5‐FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5‐FU via Wnt/β‐catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5‐FU and L‐OHP.  相似文献   
117.
118.
ABSTRACT

Liver damage induced by ischemia/reperfusion (I/R) remains a primary issue in multiple hepatic surgeries. Innate immune-mediated inflammatory responses during the reperfusion stage aggravate the injury. Nevertheless, the detailed mechanism of hepatic I/R has not been fully clarified yet. Our research focuses on the role of Transducin-like enhancer of split-1 (Tle1) in the liver I/R injury and the relation between Tle1 and Nucleotide-binding oligomerization domain 2 (NOD2). To answer these questions, we constructed mouse models of I/R and cell models of hypoxia/reoxygenation (H/R). We found decreased Tle1 accompanied by increased NOD2 during reperfusion. Mice pro-injected with Tle1-siRNA emerged aggravated liver dysfunction. Repression of Tle1 had a significant impact on NOD2 and downstream NF-κB signaling in vitro. However, alteration of NOD2 failed to affect the expression of Tle1. To conclude, our study demonstrates that Tle1 shelters the liver from I/R injury through suppression of NOD2-dependent NF-κB activation and subsequent inflammatory responses.  相似文献   
119.
ABSTRACT

Most breast cancer survivors receiving chemotherapy have severe cognitive impairment, often referred to as “chemobrain.” Polydatin (PLD) is known to have many biological activities. Thus, this study aimed to determine whether symptoms of chemobrain can be prevented or relieved by PLD. The chemobrain models were established by intraperitoneal injection of doxorubicin (DOX, 2 mg/kg) in rats once a week for 4 weeks (DOX group and DOX+PLD group). In the PLD group and DOX+PLD group, PLD (50 mg/kg) was administered orally to rats every day. We found that PLD treatment significantly protected against DOX-induced learning and memory impairment, restored hippocampal histopathological architecture. Furthermore, PLD suppressed DOX-induced oxidative stress through up-regulating Nrf2, inhibited inflammatory response by activating the NF-κB pathway, and reduced hippocampal apoptosis. Therefore, the present study indicated that PLD offered neuroprotection against DOX-induced chemobrain. PLD may assist in preventing chemobrain after chemotherapy in patients with cancers.  相似文献   
120.
Major depressive disorder takes at least 3 weeks for clinical anti‐depressants, such as serotonin selective reuptake inhibitors, to take effect, and only one‐third of patients remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive disorder patients in a short time and is reported to be effective to treatment‐resistant depression patients. The rapid and strong anti‐depressant‐like effects of ketamine cause wide concern. In addition to ketamine, caloric restriction and sleep deprivation also elicit similar rapid anti‐depressant‐like effects. However, mechanisms about the rapid anti‐depressant‐like effects remain unclear. Elucidating the mechanisms of rapid anti‐depressant effects is the key to finding new therapeutic targets and developing therapeutic patterns. Therefore, in this review we summarize potential molecular and cellular mechanisms of rapid anti‐depressant‐like effects based on the pre‐clinical and clinical evidence, trying to provide new insight into future therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号