首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   100篇
  国内免费   104篇
  2023年   17篇
  2022年   22篇
  2021年   80篇
  2020年   42篇
  2019年   47篇
  2018年   55篇
  2017年   41篇
  2016年   53篇
  2015年   57篇
  2014年   101篇
  2013年   99篇
  2012年   116篇
  2011年   117篇
  2010年   66篇
  2009年   55篇
  2008年   55篇
  2007年   80篇
  2006年   52篇
  2005年   49篇
  2004年   44篇
  2003年   37篇
  2002年   40篇
  2001年   14篇
  2000年   26篇
  1999年   23篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   13篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1982年   4篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1465条查询结果,搜索用时 31 毫秒
101.
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas gibberellin (GA) signaling mediated by the GA receptor GA-INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.

Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins inhibit gibberellin (GA)-induced degradation of DELLA proteins to regulate GA signaling and photomorphogenesis.  相似文献   
102.
103.
Myelin-derived proteins, such as tenascin-R (TN-R), myelin associate glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and Nogo-A, inhibit the central nervous system regeneration. In this study, the DNA vaccine encoding for oligodendrocyte and myelin-related antigens was employed to attenuate the axonal growth inhibitory properties of myelin in the setting of spinal cord injury. Using a rat spinal cord dorsal hemisection model, the vaccine directed against the inhibitory epitopes of Nogo-A, MAG, OMgp, and TN-R was administered intramuscularly once a week following spinal cord injury, supplemented with local application of specific anti-sera against the four antigens. Anterograde labeling of dorsal column fibers showed active axonal regeneration through the lesion site at the eighth week following the treatment in experimental group but not in control groups. Light microscopic and ultrastructural analysis revealed that vaccination with these myelin-related antigens did not lead to demyelinating disease. OMgp and TN-R levels were down-regulated at the lesion site together with a parallel increase in growth-associated protein 43 levels in the treatment groups. This study reveals the effective approach of a DNA vaccine strategy by attaining the special antibody to direct neutralization of the myelin inhibitors during spinal cord injury.  相似文献   
104.
As an essential signaling modulator, Src gene appears to be necessary for increased expression of the prolactin receptor, normal downstream signaling, and alveolar cell organization. In this study, we detected the polymorphism of Src gene by polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP) and DNA sequencing methods in 985 individuals from three Chinese cattle breeds. Three novel single nucleotide polymorphisms (SNPs) (g.14062C>T ss161151834, g.17302G>A ss161151835, g.18107T>C ss161151836) were detected. Least squares analysis showed that cows with g.14062C>T-CC genotypes and g.18107T>C-TT genotypes had the highest protein rate, while the cows with g.17302G>A-GG genotype had higher 305 d milk yield (p < 0.05), fat yield (p < 0.01) and protein yield (p < 0.01) than the ones with genotypes g.17302G>A-GA. These results revealed the statistical significant effects of three SNPs of the Src gene on the milk production traits in Chinese Holstein. In addition, based on the nine genotypes constructed from 27 combined haplotypes, the association analysis between combined haplotypes and milk production traits was carried out. Statistic results showed that the cows with combined haplotypes H2H4(CCGATT) had the highest fat rate and the highest protein rate and the cows with combined haplotypes H1H8(TCGATC) and H3H7(TCGGCC) had greater 305 d mild yield than H1H2(CCAATC)(P < 0.05). Our finding demonstrated that the Src gene possibly contributed to conducting association analysis and can be recognized as genetic marker in milk production traits and other performance for animal breeding and genetics.  相似文献   
105.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   
106.
Background While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter‐specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread. Methods Twelve rhesus and longtail macaque populations were analyzed using single nucleotide polymorphic (SNP) loci. Results There is evidence for inter‐specific admixture between Chinese rhesus and mainland longtails, with implications for genetic diversity both in the Chinese super‐SPF population at the California National Primate Research Center and in other primate facilities. Eastern Chinese rhesus appeared more highly derived than western Chinese rhesus, and allele sharing between longtails and Chinese rhesus was not random with regard to geographic distance, but no significant nuclear genetic differences between eastern and western Chinese rhesus were detected among the 245 genic SNPs assayed. Conclusion The implications of this inter‐specific admixture for the use of Chinese rhesus and mainland longtail in biomedical research should be considered.  相似文献   
107.
Mechanisms for asporin function and regulation in articular cartilage   总被引:1,自引:0,他引:1  
Osteoarthritis (OA), the most prevalent form of skeletal disease, represents a leading cause of disability following middle age. OA is characterized by the loss of articular cartilage; however, the details of its etiology and pathogenesis remain unclear. Recently, we demonstrated a genetic association between the cartilage extracellular matrix protein asporin and OA (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). Furthermore, we showed that asporin binds to transforming growth factor-beta (TGF-beta), a key cytokine in OA pathogenesis, and inhibits TGF-beta-induced chondrogenesis. To date, functional data for asporin have come primarily from mouse cell culture models of developing cartilage rather than from human articular cartilage cells, in which OA occurs. Here, we describe mechanisms for asporin function and regulation in human articular cartilage. Asporin blocks chondrogenesis and inhibits TGF-beta1-induced expression of matrix genes and the resulting chondrocyte phenotypes. Small interfering RNA-mediated knockdown of asporin increases the expression of cartilage marker genes and TGF-beta1; in turn, TGF-beta1 stimulates asporin expression in articular cartilage cells, suggesting that asporin and TGF-beta1 form a regulatory feedback loop. Asporin inhibits TGF-beta/Smad signaling upstream of TGF-beta type I receptor activation in vivo by co-localizing with TGF-beta1 on the cell surface and blocking its interaction with the TGF-beta type II receptor. Our results provide a basis for elucidating the role of asporin in the molecular pathogenesis of OA.  相似文献   
108.
109.
Tyrosinase-related protein-2 (TRP-2) is a non-mutated melanocyte differentiation antigen. The TRP-2-recognizing CD8+ T cells can evoke immune responses to melanoma in both humans and mice. Developing epitopes with amino acid replacements in their sequences might improve the low immunogenicity against this ‘self’ tumor antigen. We designed altered peptide ligands (APLs) of TRP-2(180–188) (SVYDFFVWL) with preferred primary and auxiliary HLA-A*0201 molecule anchor residue replacement. These APLs were screened for MHC-affinity by affinity prediction plots and molecular dynamics simulation, and analyzed in vitro for stability and binding-affinity to molecular HLA-A*0201. We also investigated the CTLs activities induced by TRP-2 wild-type epitope and the APLs both in vitro in human PBMCs and HLA-A2.1/Kb transgenic mice. The results indicate that TRP-2 2M analog simultaneously had stronger binding-affinity and a lower dissociation rate to HLA-A*0201, than wild-type peptide. In addition, the analog 2M was superior to other APLs and wild-type epitope in terms of immunological efficacy ex vivo as measured by the ELISPOT assays of IFN-γ and granzyme B. These results demonstrate that TRP-2 2M is an agonist epitope that can induce anti-tumor immunity superior to its wild-type epitope, and has potential application in peptide-mediated immunotherapy.  相似文献   
110.
鲤鱼肌肉生长抑制素基因(MSTN)的克隆及其组织表达特征   总被引:5,自引:0,他引:5  
肌肉生长抑制素(Myostatin,MSTN)是动物肌肉发育和生长过程中的负调控因子,对MSTN的研究将有助于促进动物生产。鲤鱼是我国的主要淡水养殖对象之一。因此,我们采用RT-PCR方法克隆了鲤鱼MSTN cDNA(No.EF551058)的部分序列,长度为921bp,编码306个氨基酸残基。鲤鱼MSTN具有MSTN的共同特征,有蛋白酶水解位点RIRR和9个保守的半胱氨酸残基。多重序列比较发现其与斑马鱼GDF8有极近的亲缘关系,96.7%的氨基酸序列同源。不同组织的RT-PCR分析发现鲤鱼MSTN主要在肌肉和脑部表达,而其他所检测组织未见表达。鲤鱼MSTN不仅在肌肉生长发育中发挥作用,可能在神经系统发育中也有其作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号