首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2123篇
  免费   171篇
  国内免费   95篇
  2023年   12篇
  2022年   23篇
  2021年   80篇
  2020年   48篇
  2019年   56篇
  2018年   61篇
  2017年   44篇
  2016年   75篇
  2015年   132篇
  2014年   158篇
  2013年   154篇
  2012年   192篇
  2011年   171篇
  2010年   103篇
  2009年   86篇
  2008年   106篇
  2007年   104篇
  2006年   93篇
  2005年   82篇
  2004年   86篇
  2003年   54篇
  2002年   55篇
  2001年   28篇
  2000年   33篇
  1999年   38篇
  1998年   21篇
  1997年   26篇
  1996年   19篇
  1995年   23篇
  1994年   15篇
  1993年   19篇
  1992年   21篇
  1991年   11篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   14篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1976年   6篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1966年   3篇
  1965年   6篇
排序方式: 共有2389条查询结果,搜索用时 15 毫秒
41.
温度变化和钾添加对扁秆藨草生长及繁殖的影响 人类活动导致的气候变暖和农业面源污染已被认为是影响湿地植物生长和繁殖的重要因素。为了预 测和缓解这些人类活动的影响,研究沼泽植物如何响应这些环境变化具有重要意义。本研究选取在欧亚 大陆广泛分布的莎草科球茎植物扁秆藨草(Bolboschoenus planiculmis)为研究对象,考察气温变化(恒温: 15、20、25 °C及交替温度:20/10和30/15 °C)和钾添加(0、1、3、9 和18 mmol/L)对其生长和繁殖性状 的影响。研究结果表明,高的恒温(20、25 °C)比高的交替温度(30/15 °C)更有利于扁秆藨草球茎的形成, 而地上生物量和株高一般在较高温度下(30/15、25 °C)达到最大值。扁秆藨草的繁殖和生长性状均与施钾量 呈驼峰型关系,最适施钾量在1–3 mmol/L K。高恒温效应和最适钾浓度的交互作用对繁殖性状的促进作 用最大,但是,较高的温度(30/15和25 °C)和0–9 mmol/L的钾浓度只促进了生长性状的生长。综上所述, 扁秆藨草的种群优势度可能受益于全球变暖和额外的钾添加。  相似文献   
42.
Dear Editor, The rapid emergence and persistence of the pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has had enormous impacts on global health and the economy.Effective vaccines against SARS-CoV-2 are urgently needed to control the coronavirus disease 2019(COVID-19) pandemic,and multiple vaccines have been found to be efficacious in preventing symptomatic COVID-19(Polack et al.,2020;Wu et al.,2020;Jones and Roy,2021).We have developed a traditional beta-propiolactone-inacti-vated aluminum hydroxide-adjuvanted whole-virion SARS-CoV-2 vaccine (BBIBP-CorV),which elicited protective immune responses in clinical trials (Wang et al.,2020;Xia et al.,2021).The vaccine has been granted conditional approvals or emergency use authorizations (EUAs) in China and other countries.  相似文献   
43.
44.
45.
Liu  Yangqiu  Wang  Yu  Lou  Yaxin  Tian  Weiping  Que  Kehua 《Journal of molecular histology》2021,52(5):1105-1114

TRPA1 and TRPV1 channels respond to external stimulation as pain mediators and form a complex with a transmembrane protein TMEM100 in some tissues. However, their expression and interaction in dental pulp is unclear. To investigate the functional co-expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts (HODs), immunohistochemistry, immunofluorescence staining and Western blot were used to study their co-localization and expression in both native HODs and cultured HOD-like cells. Calcium imaging was used to detect the functional interaction between TRPA1 and TRPV1 channels. Immunohistochemistry and multiple immunofluorescence staining of tooth slices showed positive expression of TRPA1 channel, TRPV1 channel and TMEM100 mainly in the cell bodies of HODs, and TRPA1 channel presented more obvious immunofluorescence in the cell processes than TRPV1 channel and TMEM100. HALO software analysis showed that TRPA1 and TRPV1 channels were positively expressed in most TMEM100+ HODs and these three proteins were strongly correlated in HODs (P < 0.01). The protein expression levels of TRPA1 channel, TRPV1 channel and TMEM100 in HODs showed no significant difference (P?>?0.05). Double immunofluorescence staining of cultured HOD-like cells visually demonstrated that TRPA1 and TRPV1 channel were both highly co-localized with TMEM100 with similar expressive intensity. Calcium imaging showed that there was a functional interaction between TRPA1 and TRPV1 channels in HOD-like cells, and TRPA1 channel might play a greater role in this interaction. Overall, we concluded that TRPA1 channel, TRPV1 channel and TMEM100 could be functionally co-expressed in HODs.

  相似文献   
46.
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value < 0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.KEY WORDS: iodide, microemulsion, skin permeation, transdermal  相似文献   
47.
Rheumatoid arthritis (RA) is the most common degenerative arthritic cartilage and represents a disease where the prospect of stem cell therapy offers considerable hope. Currently, bone marrow (BM) represents the major source of mesenchymal stem cells (MSCs) for cell therapy. In the pathology of RA, the pro-inflammatory cytokines, such as interleukin 6 (IL-6) play a pivotal role. To investigate the direct role of IL-6 in the chondrogenic differentiation of murine MSCs (mMSCs), we isolate MSCs from the murine bone marrow, and induce MSCs chondrogenesis with different concentrations of IL-6 in vitro. Through detecting the histological and histochemical qualities of the aggregates, we demonstrate that IL-6 inhibited the differentiation of MSCs into chondrocytes in the dose-dependence manner. These findings suggest that possible strategies for improving the clinical outcome of cartilage repair procedures.  相似文献   
48.
Tubificidae is often used in the wastewater treatment systems to minimize the sludge production because it can be fed on the activated sludge. The process conditions have effect on the growth, reproduction, and sludge reduction efficiency of Tubificidae. The effects of the water quality, density of worms, pH, temperature and dissolved oxygen (DO) concentration on the respiration rate of Tubificidae were investigated to determine the optimal conditions for the growth and metabolism of the worms and reveal the mechanisms involving the efficient sludge reduction in terms of these conditions. It was observed that the respiration rate was highest in the water discharged from an ecosystem that included symbiotic Tubificidae and microbes and was lowest in distilled water. Considering density of the worms, the highest rate was 81.72±5.12 mg O2/g(dry weight)·h·L with 0.25 g (wet weight) of worms in 1 L test flask. The maximum Tubificidae respiration rate was observed at a pH of 8.0±0.05, a rate that was more than twice as high as those observed at other pH values. The respiration rate increased in the temperature range of ∼8°C–22°C, whereas the rate declined in the temperature range of ∼22°C–30°C. The respiration rate of Tubificidae was very high for DO range of ∼3.5–4.5 mg/L, and the rates were relatively low for out of this DO range. The results of this study revealed the process conditions which influenced the growth, and reproduction of Tubificidae and sludge reduction at a microscopic level, which could be a theoretical basis for the cultivation and application of Tubificidae in wastewater treatment plants.  相似文献   
49.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   
50.
Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号