首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
12.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to stimulate PTHrP production by breast cancer cells. In this study, we confirmed that the CaR inhibits PTHrP production by MMECs but stimulates PTHrP production by Comma-D cells (immortalized murine mammary cells) and MCF-7 human breast cancer cells. We found that changes in intracellular cAMP, but not phospholipase C or MAPK signaling, correlated with the opposing effects of the CaR on PTHrP production. Pharmacologic stimulation of cAMP accumulation increased PTHrP production by normal and transformed breast cells. Inhibition of protein kinase A activity mimicked the effects of CaR activation on inhibiting PTHrP secretion by MMECs and blocked the effects of the CaR on stimulating PTHrP production in Comma-D and MCF-7 cells. We found that the CaR coupled to Galpha(i) in MMECs but coupled to Galpha(s) in Comma-D and MCF-7 cells. Thus, the opposing effects of the CaR on PTHrP production are because of alternate G-protein coupling of the receptor in normal versus transformed breast cells. Because PTHrP contributes to hypercalcemia and bone metastases, switching of G-protein usage by the CaR may contribute to the pathogenesis of breast cancer.  相似文献   
13.
The influence of nicotinamide (NA), a highly suitable precursor substrate for NAD synthesis in various tissues, on islet cell responsiveness was determined. After a 30 minute perifusion with this compound, nicotinamide, in a dose-dependent manner, potentiated glucose-induced insulin secretion. Maximal potentiation (approximately 250%) was observed at 20 mM NA and the threshold for potentiation was 3 mM. In the absence of glucose, NA did not affect basal secretion rates. Mannoheptulose blocked the primary stimulant action of glucose and the potentiating effects of NA. NA did not alter the rate of glucose usage by isolated islets. These results further underscore the possible importance of pyridine nucleotides in stimulated secretion.  相似文献   
14.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   
15.
The insulin secretory responses of rat islets to glucose (15 mM), 12-O-tetradecanoylphorbol13-acetate (TPA; 500 nM), and potassium (30 mM) were determined fromperifused islets cultured for 22-24 h in CMRL-1066 medium (controlcultured) or islets cultured in the additional presence of 500 nM TPA.Islet content of protein kinase C  (PKC) and serine and threoninephosphoprotein patterns were also monitored after the culture period.Compared with freshly isolated islets, culturing alone had no adverseeffect on the capacity of TPA or 30 mM potassium to stimulate secretionor on the islet content of PKC. In agreement with previous studies, culturing in TPA reduced the islet content of immunoreactive PKC by>95% and abolished the capacity of the phorbol ester to stimulate secretion during a subsequent dynamic perifusion. Culturing in TPAslightly improved the insulin secretory response to 15 mM glucosecompared with control-cultured islets; however, sustained rates of 15 mM glucose-induced secretion from these islets were significantly lessthan the responses of freshly isolated islets. Islets cultured in TPAresponded to 30 mM potassium with a markedly amplified insulinsecretory response that was abolished by nitrendipine. Enhancedphosphorylation of several islet proteins was also observed inTPA-cultured islets compared with control-cultured islets. Thesefindings demonstrate that culturing alone impairs glucose-induced secretion, a response that is improved but still subnormal compared with freshly isolated islet responses, if TPA is included in the culture medium. Sustained phosphorylation of several islet proteins inTPA-cultured islets may account, at least in part, for augmented calcium-dependent secretion.

  相似文献   
16.
We have proposed that the two phases of glucose-induced insulin secretion are regulated by two distinct branches of the calcium messenger system: the initial phase by a calmodulin branch, and the sustained phase by a C-kinase branch. To provide further support for this concept, we examined the separate and combined effects of tolbutamide, TPA, and forskolin upon insulin secretion from rat islets perifused in the absence of added fuels. Addition of 200 μM tolbutamide to the perifusate induces only a first phase of insulin secretion, addition of 200 nM TPA only a second phase, and addition of 10 μM forskolin only a small elevation in the basal rate of secretion. The combination of tolbutamide and TPA induces a biphasic secretory response qualitatively and quantitatively similar to that evoked by an increase in glucose concentration from 2.75 to 7 mM. The combination of TPA, tolbutamide, and forskolin evokes a biphasic pattern of insulin secretion qualitatively and quantitatively similar to that evoked by an increase in glucose concentration from 2.75 to 10 mM.  相似文献   
17.
If adrenal glomerulosa cells are treated with angiotensin II for a period of 20-30 min, their subsequent response to either a rechallenge with the same concentration of angiotensin II or treatment with BAY K 8644, a calcium channel agonist, differs from the responses of control cells. Perifusion of control cells with 10 nM-angiotensin II leads to an increase in aldosterone secretory rate from 44 +/- 7 to 166 +/- 9 pg/min per 10(6) cells, but perifusion of cells pretreated for a 20 min period with angiotensin II leads to an increase in secretory rate from 51 +/- 9 to 209 +/- 18 pg/min per 10(6) cells. Likewise, treatment of control cells with 10 nM-BAY K 8644 leads to no significant increase in aldosterone secretory rate, but treatment of previously exposed cells to angiotensin II leads to an increase in rate from 51 +/- 9 to 130 +/- 11 pg/min per 10(6) cells. This memory effect is time-dependent in two ways: cells must be exposed to angiotensin II for 20 min or more before it is apparent; the longer the time between removal of angiotensin II and the rechallenge, the less effect these agents have on aldosterone secretory rate. When cells are exposed to angiotensin II for 20 min and then treated with [Sar1,Ala8]angiotensin II, a competitive antagonist of angiotensin II action, the aldosterone secretory rate falls to basal with a half time of 5-7 min. If BAY K 8644 is added simultaneously with [Sar1,Ala8]angiotensin II, the secretory rate falls with a halftime of 35-60 min. BAY K 8644 increases Ca2+ influx rate to the same extent in the presence or absence of [Sar1,Ala8]angiotensin II, and does not alter the effect of either angiotensin II or [Sar1,Ala8]angiotensin II on the production of inositol tris-, bis-, or mono-phosphate. In cells treated with 10 nM-angiotensin II for either 20, 30 or 45 min, the extent of phosphorylation of four cellular proteins is increased. If cells treated for 20 min with angiotensin II are then treated with [Sar1,Ala8]angiotensin II, and examined 15 min later (35 min), there is no longer an increase in the extent of phosphorylation of any of the four proteins. If such cells are then treated with 10 nM-BAY K 8644 and re-examined 5 min later (40 min), all four patients show an increase in the extent of phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
18.
Isolated rat islets were incubated with myo-[2-3H]inositol for 2 h to label their phosphoinositide (PI) pools. Labelling was carried out under three separate conditions: in media containing low (2.75 mM) glucose, high (13.75 mM) glucose, or low (2.75 mM) glucose plus sulphated cholecystokinin (CCK-8S; 200 nM). After labelling, the islets were perifused and the insulin-secretory response to 20 mM-glucose was measured. PI hydrolysis in these same islets was assessed by measurements of both [3H]inositol efflux and the accumulation of labelled inositol phosphates. The following major observations were made. After prelabelling for 2 h in low glucose, perifusion with 20 mM-glucose resulted in a biphasic insulin-secretory response, an increase in [3H]inositol efflux and a parallel increase in the accumulation of labelled inositol phosphates. After prelabelling in high (13.75 mM) glucose, peak first-phase insulin secretion induced by 20 mM-glucose increased 2-2.5-fold, whereas the second phase of insulin release, as well as [3H]inositol efflux and inositol phosphate accumulation, were significantly decreased. The simultaneous infusion of the diacylglycerol kinase inhibitor 1-mono-oleoylglycerol (50 microM), along with 20 mM-glucose, restored the second-phase insulin-secretory response from these islets. After labelling in low (2.75 mM) glucose plus CCK-8S, the initial phases of the insulin-secretory and [3H]inositol-efflux responses to 20 mM-glucose were blunted and the sustained phases of both responses were markedly decreased. Inositol phosphate accumulation was also impaired. Labelling islets in high (13.75 mM) glucose or low (2.75 mM) glucose plus CCK-8S suppresses, in a parallel fashion, glucose-induced increases in PI hydrolysis and in second-phase insulin release. These findings suggest that desensitization of the insulin-secretory response is a consequence of impaired information flow in the inositol lipid cycle.  相似文献   
19.
20.
The effect of altering the lipid composition of the brush-border membrane on the ability of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) to stimulate calcium transport across the intestinal mucosa was examined by raising chicks on a vitamin D, essential fatty acid-deficient diet (-DEFAD) and measuring calcium absorption from duodenal sacs in situ and calcium uptake into brush-border membrane vesicles in vitro. Administration of 1,25-(OH)2D3 to -DEFAD and to -D control chicks led to the same increase in calcium transport in situ, whereas calcium transport in isolated brush-border membrane vesicles was not stimulated in the EFAD group, but responded normally in the control group. When the incubation temperature was increased to 34 degrees C, brush-border membrane vesicles from 1,25-(OH)2D3-treated essential fatty acid-deficient (+DE-FAD) chicks accumulated calcium at a faster rate than did vesicles from -DEFAD chicks. There was a marked decrease in the linoleic acid content and an increase in the oleic acid content of both the total lipid extract of the brush-border membrane as well as the phosphatidylcholine and phosphatidylethanolamine fractions, which could explain the temperature sensitivity of the in vitro system. When the diet of the EFAD chicks was supplemented with linoleic acid, the rate of calcium uptake into subsequently isolated vesicles from +DE-FAD chicks correlated with the amount of linoleic acid in the brush-border membranes. These results support the concept that the action of 1,25-(OH)2D3 on membrane lipid turnover and structure plays a critically important role in the 1,25-(OH)2D3-mediated cellular transport responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号