首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   8篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   11篇
  2011年   8篇
  2010年   12篇
  2009年   7篇
  2008年   10篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有118条查询结果,搜索用时 265 毫秒
91.
Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate‐ and pollution‐induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA‐sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over‐expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down‐regulation of several genes involved in immune and stress response, and the over‐representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.  相似文献   
92.
Neurotrophins are trophic factors that regulate important neuronal functions. They bind two unrelated receptors, the Trk family of receptor-tyrosine kinases and the p75 neurotrophin receptor (p75). p75 was recently identified as a new substrate for gamma-secretase-mediated intramembrane proteolysis, generating a p75-derived intracellular domain (p75-ICD) with signaling capabilities. Using PC12 cells as a model, we studied how neurotrophins activate p75 processing and where these events occur in the cell. We demonstrate that activation of the TrkA receptor upon binding of nerve growth factor (NGF) regulates the metalloprotease-mediated shedding of p75 leaving a membrane-bound p75 C-terminal fragment (p75-CTF). Using subcellular fractionation to isolate a highly purified endosomal fraction, we demonstrate that p75-CTF ends up in endosomes where gamma-secretase-mediated p75-CTF cleavage occurs, resulting in the release of a p75-ICD. Moreover, we show similar structural requirements for gamma-secretase processing of p75 and amyloid precursor protein-derived CTFs. Thus, NGF-induced endocytosis regulates both signaling and proteolytic processing of p75.  相似文献   
93.
1. Trail‐sharing between different ant species is rare and restricted to a small number of species pairs. Its underlying mechanisms are largely unknown. For trail‐sharing to occur, two factors are required: (i) one or both species must recognise the other species or its pheromone trails and (ii) both species must tolerate each other to a certain extent to allow joint use of the trail. A species that follows another's trails can efficiently exploit the other's information on food sources contained in the pheromone trails. Hence, food competition and thus aggressive interactions between a species following another's trail and the species being followed, seem likely. 2. In the present study, we investigated interspecific trail following and interspecific aggression in trail sharing associations (i) among Polyrhachis ypsilon, Camponotus saundersi, and Dolichoderus cuspidatus, and (ii) among Camponotus rufifemur and Crematogaster modiglianii. We tested whether trail‐sharing species follow each other's pheromone trails, and whether the ants tolerated or attacked their trail‐sharing partners. In both associations, we confronted workers with pheromone trails of their associated species, and, for the former association, measured interspecific aggression among the trail‐sharing species. 3. In our assays, D. cuspidatus and C. rufifemur regularly followed heterospecific pheromone trails of P. ypsilon and C. modiglianii, respectively. However, only few workers of the remaining species followed heterospecific pheromone trails. Thus, shared trails of P. ypsilon and C. saundersi cannot be explained by interspecific trail‐following. 4. Interspecific aggression among P. ypsilon, C. saundersi, and D. cuspidatus was strongly asymmetric, C. saundersi being submissive to the other two. All three species differentiated between heterospecific workers from the same or another site, suggesting habituation to the respective trail‐sharing partners. We therefore hypothesise that differential tolerance by dominant ant species may be mediated by selective habituation towards submissive species and this way determines the assembly of trail‐sharing associations.  相似文献   
94.
拐芹根化学成分研究Ⅱ   总被引:3,自引:0,他引:3  
从伞型科当归属植物拐芹(Angelica polymorpha Maxim)的根及根茎中又分得4个结晶性化合物。经物理常数测定、光谱分析,分别鉴定为欧前胡素Ⅰ,异氧化前胡内酯Ⅱ,Pabulenol Ⅲ,Phellopterin Ⅳ。  相似文献   
95.
96.
97.
98.
99.
100.
An extensive analysis of organ and cell size was performed in three different Arabidopsis lines transformed with the early nodulin gene enod40 under control of the CaMV35S promoter. All three transgenic lines presented a significant decrease in the mean size of both epidermal internode and leaf mesophyll cells. Flow cytometric and image analysis of enod40-transfected protoplasts prepared from wild-type Arabidopsis cell suspensions showed that transient expression of the gene resulted in reduced forward light scattering (a factor correlated with particle size) and cell size. The direct administration of ENOD40 peptide to fresh protoplasts also resulted in reduced forward scattering with respect to the control and to the administration of unrelated peptides. As far as is known this is the first report documenting a biological effect of enod40 at the cellular level in non-legume plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号