首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4460篇
  免费   467篇
  国内免费   436篇
  2024年   3篇
  2023年   47篇
  2022年   70篇
  2021年   191篇
  2020年   155篇
  2019年   225篇
  2018年   183篇
  2017年   170篇
  2016年   190篇
  2015年   278篇
  2014年   293篇
  2013年   329篇
  2012年   362篇
  2011年   327篇
  2010年   231篇
  2009年   201篇
  2008年   224篇
  2007年   207篇
  2006年   172篇
  2005年   155篇
  2004年   172篇
  2003年   196篇
  2002年   227篇
  2001年   136篇
  2000年   116篇
  1999年   91篇
  1998年   81篇
  1997年   57篇
  1996年   36篇
  1995年   32篇
  1994年   22篇
  1993年   16篇
  1992年   14篇
  1991年   26篇
  1990年   20篇
  1989年   23篇
  1988年   9篇
  1987年   11篇
  1986年   12篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   5篇
  1973年   4篇
  1966年   2篇
  1959年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有5363条查询结果,搜索用时 156 毫秒
61.
812 West Malaysian Orang Asli belonging to four ethnic groups were surveyed for adenosine deaminase (ADA; EC 3.5.4.4) using starch gel electrophoresis. Only the common ADA1 and ADA2 alleles were found, with the frequencies of the latter being 0.025, 0.103, 0.115 and 0.028 in the Semai, Semelai, Temuan, and Jakun groups, respectively. A new 'breeding genetic distance' was applied to these gene frequencies and the Semelai and Temuan were found to be more closely related to each other, and to have considerably more evolutionary flexibility on this scale of 'micro-evolution' than the other two groups. The Semai and Jakun were more similar to each other on the basis of these ADA gene frequencies.  相似文献   
62.
Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti‐oxidative stress and anti‐inflammatory properties of the active form of vitamin D3, 1,α, 25‐dihydroxyvitamin D3, in a mouse cone cell line, 661W. Mouse cone cells were treated with H2O2 or a mixture of H2O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti‐oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2O2. H2O2 treatment in 661W cells can significantly down‐regulate the expression of antioxidant genes and up‐regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD.  相似文献   
63.
64.
65.
During orthodontic tooth movement (OTM), periodontal ligament cells (PDLCs) receive the mechanical stimuli and transform it into myofibroblasts (Mfbs). Indeed, previous studies have demonstrated that mechanical stimuli can promote the expression of Mfb marker α-smooth muscle actin (α-SMA) in PDLCs. Transforming growth factor β1 (TGF-β1), as the target gene of yes-associated protein (YAP), has been proven to be involved in this process. Here, we sought to assess the role of YAP in Mfbs differentiation from PDLCs. The time-course expression of YAP and α-SMA was manifested in OTM model in vivo as well as under tensional stimuli in vitro. Inhibition of RhoA/Rho-associated kinase (ROCK) pathway using Y27632 significantly reduced tension-induced Mfb differentiation and YAP expression. Moreover, overexpression of YAP with lentiviral transfection in PDLCs rescued the repression effect of Mfb differentiation induced by Y27632. These data together suggest a crucial role of YAP in regulating tension-induced Mfb differentiation from PDLC interacted with RhoA/ROCK pathway.  相似文献   
66.
Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor‐β receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)‐β1, as mannitol (27.5 mM) significantly enhanced the TGF‐β1‐induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF‐β RII at 336 residues in a time (0–24 h) and dose (5.5–38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF‐β RI in a dose‐ and time‐course dependent manner. These observations may be closely related to decreased catabolism of TGF‐β RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF‐β RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half‐life and inhibited the protein level of TGF‐β RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF‐β receptors by retarding proteasomal degradation of TGF‐β RI. This study clarifies the mechanism underlying hyperosmotic‐induced renal fibrosis in renal distal tubule cells. J. Cell. Biochem. 109: 663–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
67.
68.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
69.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号