首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   13篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   20篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   7篇
  2016年   17篇
  2015年   15篇
  2014年   13篇
  2013年   53篇
  2012年   29篇
  2011年   23篇
  2010年   16篇
  2009年   13篇
  2008年   15篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   14篇
  2003年   7篇
  2002年   13篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有347条查询结果,搜索用时 15 毫秒
101.
A series of isatins incorporating thiazole, thiadiazole, benzothiazole and p-toluene sulfonyl hydrazide moieties, along with their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by elemental analyses, molar conductances, magnetic moments, IR, NMR and electronic spectral data. These compounds have been screened for antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the synthesized compounds have shown good affinity as antibacterial and/or antifungal agents which increased in most of the cases on complexation with the metal ions.  相似文献   
102.
Kefzol (kzl), a beta-lactam antibiotic, possesses various donor sites for interaction with transition metal(II) ions [Co(II), Cu(II), Ni(II) and Zn(II)] to form complexes of the type [M(kzl)2]Cl2 and [M(kzl)Cl], with molar ratio of metal: ligand (M:L) of 1:2 and 1:1 respectively. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their IR and NMR spectra suggest that kefzol potentially acts as a bidentate, tridentate as well as monoanionic tetradentate ligand. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis. The metal complexes were found to be more potent against one or more bacterial species than the uncomplexed kefzol.  相似文献   
103.
Radiation therapy (RT) is an important therapeutic modality in the treatment of thoracic tumors. The maximum doses to these tumors are often limited by the radiation tolerance of lung tissues. Lung injury from ionizing radiation is believed to be a consequence of oxidative stress and a cascade of cytokine activity. Superoxide dismutase (SOD) is a key enzyme in cellular defenses against oxidative damage. The objective of this study was to determine whether the SOD mimetic AEOL 10113 [manganese (III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP(5+))] increases the tolerance of lung to ionizing radiation. AEOL 10113 was able to significantly reduce the severity of RT-induced lung injury. This was strongly supported with histopathology results and measurements of collagen deposition (hydroxyproline content). There was a significant reduction in the plasma level of the profibrogenic cytokine transforming growth factor-beta (TGF-beta) in the group of rats receiving RT + AEOL 10113. In conclusion, the novel SOD mimetic, AEOL 10113, demonstrates a significant protective effect from radiation-induced lung injury.  相似文献   
104.
DMP 406 is a clozapine analogue developed by Dupont-Pharma for the treatment of schizophrenia. Unfortunately it caused agranulocytosis in dogs during preclinical studies. Clozapine also causes agranulocytosis and this is believed to be due to a reactive nitrenium ion metabolite produced by neutrophils. We studied the oxidation of DMP 406 by activated neutrophils and found that the major reactive species that is produced is not a nitrenium ion but rather an imine. This metabolite is similar to the reactive metabolite that has been proposed to be responsible for mianserin-induced agranulocytosis. Therefore we also studied the oxidation of mianserin by activated neutrophils and found that, although the major species is an iminium ion, it also bears a lactam moiety in the piperazine ring resulting from further oxidation. We usually find that HOCl is a good model system for the production of reactive metabolites of drugs that are formed by activated neutrophils, but in the case of both DMP 406 and mianserin, the products produced were significantly different than those formed by activated neutrophils. In contrast, the combination of horseradish peroxidase and hydrogen peroxide (HRP/H(2)O(2)) formed a very similar pattern of products, and this system was used to produce sufficient quantities of metabolites to allow for identification. The reactive metabolites of both DMP 406 and mianserin reacted with a range of nucleophiles, but in many cases the reaction was reversible. The best nucleophile for trapping these reactive metabolites was cyanide. It has been demonstrated that the products of clozapine oxidation by HRP/H(2)O(2), presumably the nitrenium ion, induced apoptosis in neutrophils at therapeutic concentrations of clozapine. It has been suggested that this process is involved in the mechanism of clozapine-induced agranulocytosis. We tested DMP 406 and mianserin in this system to see if the ability of a reactive metabolite of a drug to cause apoptosis could predict the ability of that drug to cause agranulocytosis. We used clozapine as a positive control and we also tested olanzapine, a drug that forms a reactive metabolite similar to that of clozapine but is given at a lower dose and does not cause agranulocytosis. We found that DMP 406 did not increase apoptosis at concentrations below 50 microM, and although mianserin did increase apoptosis at 10 microM this is above the therapeutic concentration. Olanzapine caused an increase in apoptosis at the same concentration as clozapine (1 microM), but because its therapeutic concentration is lower, this concentration was above the pharmacological range. There was no increase in apoptosis with any drug in the absence of HRP/H(2)O(2). These results indicate that this assay is unable to reliably predict the ability of different types of drugs to cause agranulocytosis. This is not a surprising result given that different drugs may induce agranulocytosis by different mechanisms.  相似文献   
105.
Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.  相似文献   
106.
Heavy metal accumulation in crops and soils from wastewater irrigation poses a significant threat to the human health. A study was carried out to investigate the removal potential of heavy metals (HM) by native plant species, namely Cannabis sativa L., Chenopodium album L., Datura stramonium L., Sonchus asper L., Amaranthus viridus L., Oenothera rosea (LHer), Xanthium stramonium L., Polygonum macalosa L., Nasturtium officinale L. and Conyza canadensis L. growing at the municipal wastewater site in Abbottabad city, Pakistan. The HM concentrations varied among plants depending on the species. Metal concentrations across species varied in the order iron (Fe) > zinc (Zn) > chromium (Cr) > nickel (Ni) > cadmium (Cd). Majority of the species accumulated more HM in roots than shoots. Among species, the concentrations (both in roots and shoots) were in the order C. sativa > C. album > X. stramonium > C. canadensis > A. viridus > N. officinale > P. macalosa > D. stramonium > S. asper > O. rosea. No species was identified as a hyperaccumulator. All species exhibited a translocation factor (TF) less than 1. Species like C. sativa, C. album and X. stramonium gave higher (> 1) biological concentration factor (BCF) and biological accumulation coefficient (BAC) especially for Fe, Cr and Cd than other species. Higher accumulation of heavy metals in these plant species signifies the general application of these species for phytostabilization and phytoextraction of HM from polluted soils.  相似文献   
107.
108.
The objective of this study was to determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N-diethylimidazolium-2-yl) porphyrin, AEOL10150, reduces the severity of long-term lung injury induced by fractionated radiation (RT). Fisher 344 rats were randomized into five groups: RT+AEOL10150 (2.5 mg/kg BID), AEOL10150 (2.5 mg/kg BID) alone, RT+AEOL10150 (5 mg/kg BID), AEOL10150 (5 mg/kg BID) alone and RT alone. Animals received five 8 Gy fractions of RT to the right hemithorax. AEOL10150 was administered 15 min before RT and 8 h later during the period of RT treatment (5 days), followed by subcutaneous injections for 30 days, twice daily. Lung histology at 26 weeks revealed a significant decrease in lung structural damage and collagen deposition in RT+AEOL10150 (5 mg/kg BID) group, in comparison to RT alone. Immunohistochemistry studies revealed a significant reduction in tissue hypoxia (HIF1α, CAIX), angiogenic response (VEGF, CD-31), inflammation (ED-1), oxidative stress (8-OHdG, 3-nitrotyrosine) and fibrosis pathway (TGFβ1, Smad3, p-Smad2/3), in animals receiving RT+AEOL10150 (5 mg/kg BID). Administration of AEOL10150 at 5 mg/kg BID during and after RT results in a significant protective effect from long-term RT-induced lung injury. Low dose (2.5 mg/kg BID) delivery of AEOL10150 has no beneficial radioprotective effects.  相似文献   
109.
2-Amino-1,3,4-thiadiazole undergoes a condensation reaction with furane-, thiophene- and pyrrole-2-carboxaldehyde to form tridentate NNO, NNS and NNN donor Schiff bases. These Schiff bases were further used to obtain complexes of the type [M(L) 2] X, where M=Co(II), Cu(II), Ni(II) or Zn(II), L=L 1, L 2 or L 3 and X=Cl 2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff bases increased upon chelation/complexation in comparison to the uncomplexed Schiff bases against the tested bacterial species thus, opening new approaches to find new ways in the fight against antibiotic-resistant strains.  相似文献   
110.
Mononuclear and binuclear transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] acetylsalicylates of the type [M(L) 2], [M(L) 2 Cl 2] and [(M) 2 (L) 4] have been prepared and characterized on the basis of their physical, spectral and analytical data. The complexes have been investigated in an in vivo animal model for anti-inflammatory activity and show a better effect and a more potent action than acetylsalicylic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号