首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   57篇
  2022年   2篇
  2021年   11篇
  2020年   8篇
  2019年   4篇
  2018年   9篇
  2017年   10篇
  2016年   17篇
  2015年   12篇
  2014年   32篇
  2013年   39篇
  2012年   50篇
  2011年   52篇
  2010年   39篇
  2009年   30篇
  2008年   29篇
  2007年   47篇
  2006年   48篇
  2005年   48篇
  2004年   33篇
  2003年   39篇
  2002年   32篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   13篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1984年   3篇
  1982年   2篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1964年   1篇
  1961年   1篇
  1957年   1篇
排序方式: 共有714条查询结果,搜索用时 58 毫秒
41.
We have previously shown that all-trans retinoic acid (atRA), the active metabolite of vitamin A, enhances the activation of the inducible nitric oxide synthase (NOS II) pathway, a component of innate immunity, in rats in vivo. We investigated the relative contribution of retinoic acid receptor-alpha (RARalpha) and retinoid X receptors (RXRs) to NOS II activation triggered by LPS. Five-day supplementation with 10 mg/kg of either atRA or the RARalpha selective agonist Ro-40-6055, but not with 10 mg/kg of the pan-RXR agonist Ro-25-7386, enhanced the LPS-induced NOS II mRNA, protein expression in liver, and plasma nitrite/nitrate concentration. Both atRA and the RARalpha agonist (but not the RXR agonist) increased the number of peripheral T helper lymphocytes and plasma interferon-gamma concentration. Synergism between retinoids and LPS on NOS II activation within an organ coincided with synergism on interferon regulatory factor-1 mRNA expression but not with the level of expression of the RARalpha protein. These results suggest that, in vivo, atRA activates NOS II through RARalpha and contributes to characterizing the complex effect of retinoids on the host inflammatory/immune response.  相似文献   
42.
Zhao ZY  Lu FH  Xie Y  Fu YR  Bogdan A  Touitou Y 《Steroids》2003,68(6):551-555
Adrenal function and aging have been the object of intense interest in recent years. In this study we analyzed morning (08:00 h) serum cortisol concentrations from a sample of Chinese subjects aged from 31 to 110 years. These levels differed according to age, health status and sex, although the sex difference was confirmed only among the healthy elderly. These results suggest that age (older than 60 years), disease and male sex are associated with increased morning serum cortisol levels in a Chinese population.  相似文献   
43.
Hydrophobic proteins are difficult to analyze by two-dimensional electrophoresis (2-DE) because of their intrinsic tendency to self-aggregate during the first dimension (isoelectric focusing, IEF) or the equilibration steps. This aggregation renders their redissolution for the second dimension uncertain and results in the reduction of the number and intensity of protein spots, and in undesirable vertical and horizontal streaks across gels. Trifluoroethanol (TFE) is traditionally used at high concentration to solubilize peptides and proteins for NMR studies. Depending upon its concentration, TFE strongly affects the three-dimensional structure of proteins. We report here a phase separation system based on TFE/CHCl(3), which is able to extract a number of intrinsic membrane proteins. The addition of TFE in the in-gel sample rehydration buffer to improve membrane protein IEF separation is also presented. The procedure using urea, thiourea, and sulfobetaine as chaotropic agents was modified by the addition of TFE and removing of sulfobetaine at an optimized concentration in the solubilization medium used for the first dimension. When using membrane fractions isolated from Escherichia coli, the intensity and the number of spots detected from 2-DE gels that used TFE in the solubilization medium were significantly increased. The majority of the proteins identified using peptide mass fingerprinting and tandem mass spectrometry (MS/MS) were intrinsic membrane proteins, proteins of beta barrel structure or transmembrane proteins.  相似文献   
44.
Pluridigite (Pdt) is a semi-dominant mutation obtained after a mutagenesis experiment with ethyl-nitroso-urea (ENU). The mutant exhibits abnormal skeletal pattern formation characterized by the formation of extra digits (polydactyly) in the preaxial (anterior) part of the hindlimbs. The phenotype shows incomplete penetrance, depending on the genetic background. In an F2 cross with C57BL/6, the phenotype could not be associated with a single locus. Strong linkage was observed with markers located on Chromosome (Chr) 12, in a 2-cM interval between D12Mit136 and D12Mit153. This region contains the Twist gene, and we show that the [Pdt] phenotype is dependent upon a new allele of Twist. We further identified that the whole Chr 4 is associated with the [Pdt] phenotype. The Pluridigite phenotype thus results from the combination of a Twist mutant allele and at least two additional loci.  相似文献   
45.
We present the isolation of six Hox genes in the chaetognath Spadella cephaloptera. We identified one member of the paralogy group 3, four median genes and a mosaic gene that shares features of both median and posterior classes ( SceMedPost). Several hypotheses may account for the presence of a mosaic Hox gene in this animal. Here we propose that SceMedPost may represent an ancestral gene, which has not diverged totally into a posterior or a median one. This hypothesis has interesting implications for the reconstruction of the evolutionary history of Hox genes and suggests that Chaetognatha lineage divergence could predate the deuterostome/protostome split. Such a phylogenetic position is considered in the light of their embryological and morphological characters.  相似文献   
46.
47.
Leipner J  Stamp P  Fracheboud Y 《Planta》2000,210(6):964-969
Infiltrating detached maize (Zeamays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 μmol photons m−2 s−1) at 5 °C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (Fv′/Fm′) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or α-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Received: 20 May 1999 / Accepted: 29 October 1999  相似文献   
48.
The vacuolar membrane (tonoplast) of plant cells contains aquaporins, protein channels that facilitate the selective transport of water. These tonoplast intrinsic proteins (TIPs) of 23–29 kDa belong to the ancient major intrinsic protein (MIP) family. A monospecific polyclonal antiserum directed against a 26 kDa intrinsic protein from the tonoplast of meristematic cells from cauliflower (Brassica oleracea L. var. botrytis) was used to screen a cDNA library. Two distinct cDNAs have been isolated. Both clones, c26-1 and c26-2, encode closely related TIPs. The c26-1 insert, consisting of 933 bp upstream of the poly(A) tail, is a full-length cDNA with an open reading frame encoding a protein of 251 amino acids with a calculated Mr of 25 500. The c26-2 insert is a 5′ truncated cDNA. The two cDNAs share 90.5% sequence identity within their overlapping coding regions but only 35% sequence identity in the 3′␣untranslated regions, indicating that highly related TIP-encoding genes are expressed in meristematic cells. Although TIPs have previously been found in a variety of cell types, they have not been found in meristems. The derived amino acid sequences (BobTIP26-1 and BobTIP26-2, respectively) closely resemble the aquaporin γ-TIP from Arabidopsis thaliana. Northern blot analysis and in situ hybridization show that BobTIP26 mRNAs preferentially accumulate in highly meristematic cells, mostly before and during cell enlargement, and in the living cells of the xylem. This differential pattern of expression is also found by immunodetection of BobTIP26 polypeptides. The gene expression patterns are discussed with respect to the probable function of the gene products. Received: 27 March 1997 / Accepted: 20 May 1997  相似文献   
49.
Senescence is an irreversible cell‐cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss‐of‐function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK‐related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant‐negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.  相似文献   
50.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号