首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   49篇
  2023年   1篇
  2022年   2篇
  2021年   18篇
  2020年   11篇
  2019年   7篇
  2018年   14篇
  2017年   8篇
  2016年   13篇
  2015年   21篇
  2014年   19篇
  2013年   30篇
  2012年   48篇
  2011年   37篇
  2010年   25篇
  2009年   24篇
  2008年   34篇
  2007年   23篇
  2006年   24篇
  2005年   25篇
  2004年   24篇
  2003年   25篇
  2002年   27篇
  2001年   5篇
  2000年   3篇
  1999年   10篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有528条查询结果,搜索用时 109 毫秒
521.
522.
523.
524.
Similarities between the mode of action of growth factors and the oncogene product (pp 60 src protein) of Rous Sarcoma virus have been described. However, a major difference is that addition of growth factors does not induce a malignant transformation of cells. The present work proposes a hypothesis concerning this difference. Various data suggest that density-dependent inhibition (DDI) of growth in non-transformed cells is due to the diffusion of growth inhibitory molecules. Inhibitory factors of 45 K (IDF 45) and 12 K have been fractionated. We assume that the stimulation of DNA synthesis induced by growth factor addition to dense quiescent cultures of non-transformed cells leads to an increase in the activity of autocrine inhibitory molecules in such a manner that the growth factor stimulatory effect is only transient, and cells re-enter the Go phase. On the contrary, the stimulation of DNA synthesis by v-src transformation would not be counterbalanced by inhibitory diffusing factors and cells would not enter Go phase. We present preliminary results which support this assumption. Dense quiescent cultures of chick embryo fibroblasts infected by Ny 68 virus (ts mutant for transformation of Rous Sarcoma virus) were stimulated to proliferate either by addition of growth factors in cultures maintained at 41 degrees C or by expression of transformation (by the cell transfer from 41 to 37 degrees C, the permissive temperature for expression of transformation). Stimulation of DNA synthesis by growth factors was totally inhibited by the inhibitory diffusing factors of 45 K (IDF45) whereas the stimulation of DNA synthesis produced by transformation was reproducibly not decreased by IDF45.  相似文献   
525.
The metabolism of green algae has been the focus of much research over the last century. These photosynthetic organisms can thrive under various conditions and adapt quickly to changing environments by concomitant usage of several metabolic apparatuses. The main electron coordinator in their chloroplasts, nicotinamide adenine dinucleotide phosphate (NADPH), participates in many enzymatic activities and is also responsible for inter-organellar communication. Under anaerobic conditions, green algae also accumulate molecular hydrogen (H2), a promising alternative for fossil fuels. However, to scale-up its accumulation, a firm understanding of its integration in the photosynthetic apparatus is still required. While it is generally accepted that NADPH metabolism correlates to H2 accumulation, the mechanism of this collaboration is still vague and relies on indirect measurements. Here, we investigated this connection in Chlamydomonas reinhardtii using simultaneous measurements of both dissolved gases concentration, NADPH fluorescence and electrochromic shifts at 520–546 nm. Our results indicate that energy transfer between H2 and NADPH is bi-directional and crucial for the maintenance of redox balance under light fluctuations. At light onset, NADPH consumption initially eventuates in H2 evolution, which initiates the photosynthetic electron flow. Later on, as illumination continues the majority of NADPH is diverted to the Calvin–Benson–Bassham cycle. Dark onset triggers re-assimilation of H2, which produces NADPH and so, enables initiation of dark fermentative metabolism.

Energy transfer between H2 and NADPH is bi-directional and crucial for the maintenance of redox balance under light fluctuations.  相似文献   
526.
Zinc is an essential element in mammalian development. However, little is known about concentrations of zinc in specific regions/organs in the embryo. We have employed selenite autometallography (AMG) and TSQ histofluoroscence to detect histochemically reactive (chelatable) zinc in whole midsagittal embryos and sections from neonatal mice. Chelatable zinc exhibited a broad distribution, being particularly localized to rapidly proliferating tissues, such as skin and gastrointestinal epithelium. Zinc was also observed in various types of tissues such as bone and liver. In the perinatal central nervous system, zinc was present almost exclusively in choroid plexus. The two methods used demonstrated generally similar distributions with some exceptions, e.g., in liver and blood. The ubiquity of zinc in the embryo, particularly in rapidly proliferating tissues, suggests a widespread role in fetal physiology.  相似文献   
527.
We applied the quasi in situ conservation strategy, described in an accompanying paper, to a critically endangered plant species, Iris atrofusca from the Northern Negev, Israel. As the first steps of this strategy implementation we performed habitat and demographic observations; creation of two living collections outside the natural populations, but within the same ecological conditions; and relocation experiments. Plants in the living collections got established and showed high reproductive potential. In the relocation experiments, 3 years after introduction of rhizomes, no firm conclusions could be made about factors limiting species distribution at either large or small scale, but microhabitat was important for relocation success. We conclude that complex conservation approach that includes quasi in situ strategy should be useful for an endangered species that is distributed over variable ecological conditions.  相似文献   
528.
Insects are often associated with symbiotic micro‐organisms, which allow them to utilize nutritionally marginal diets. Adult fruit flies (Diptera: Tephritidae) associate with extracellular bacteria (Enterobacteriaceae) that inhabit their digestive tract. These flies obtain nutrients by foraging for plant exudates, honeydew and bird droppings scattered on leaves and fruit – a nutritional niche which offers ample amounts of carbohydrates, but low quantities of available nitrogen. We identified the bacteria resident in the gut of the olive fly (Bactrocera oleae) – a worldwide pest of olives and examined their contribution to nitrogen metabolism in the adult insect. By suppressing bacteria in the gut and monitoring female fecundity, we demonstrate that bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production. In an ecological context, bacteria were found to be beneficial to females subsisting on bird droppings, but not on honeydew – two natural food sources. We suggest that a main gut bacterium (Candidatus Erwinia dacicola) forms an inseparable, essential part of this fly's nutritional ecology. The evolution of this symbiosis has allowed adult flies to utilize food substrates which are low or imbalanced in assimilable nitrogen and thereby to overcome the nitrogen limitations of their natural diet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号