首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   36篇
  2021年   14篇
  2020年   4篇
  2018年   11篇
  2017年   8篇
  2016年   12篇
  2015年   19篇
  2014年   20篇
  2013年   25篇
  2012年   35篇
  2011年   19篇
  2010年   20篇
  2009年   20篇
  2008年   36篇
  2007年   37篇
  2006年   20篇
  2005年   18篇
  2004年   34篇
  2003年   18篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   13篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   12篇
  1992年   12篇
  1991年   10篇
  1990年   15篇
  1989年   9篇
  1988年   6篇
  1987年   10篇
  1985年   4篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1979年   5篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   10篇
  1972年   8篇
  1971年   5篇
  1970年   7篇
  1969年   6篇
  1966年   3篇
  1962年   3篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
61.
The combination of radionuclide-based imaging modalities such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) with magnetic resonance imaging (MRI) is likely to become the next generation of clinical scanners. Hence, there is a growing interest in the development of SPECT- and PET-MRI agents. To this end, we report a new class of dual-modality imaging agents based on the conjugation of radiolabeled bisphosphonates (BP) directly to the surface of superparamagnetic iron oxide (SPIO) nanoparticles. We demonstrate the high potential of BP-iron oxide conjugation using (??m)Tc-dipicolylamine(DPA)-alendronate, a BP-SPECT agent, and Endorem/Feridex, a liver MRI contrast agent based on SPIO. The labeling of SPIOs with (??m)Tc-DPA-alendronate can be performed in one step at room temperature if the SPIO is not coated with an organic polymer. Heating is needed if the nanoparticles are coated, as long as the coating is weakly bound as in the case of dextran in Endorem. The size of the radiolabeled Endorem (??m)Tc-DPA-ale-Endorem) was characterized by TEM (5 nm, Fe?O? core) and DLS (106 ± 60 nm, Fe?O? core + dextran). EDX, Dittmer-Lester, and radiolabeling studies demonstrate that the BP is bound to the nanoparticles and that it binds to the Fe?O? cores of Endorem, and not its dextran coating. The bimodal imaging capabilities and excellent stability of these nanoparticles were confirmed using MRI and nanoSPECT-CT imaging, showing that (??m)Tc and Endorem co-localize in the liver and spleen In Vivo, as expected for particles of the composition and size of (??m)Tc-DPA-ale-Endorem. To the best of our knowledge, this is the first example of radiolabeling SPIOs with BP conjugates and the first example of radiolabeling SPIO nanoparticles directly onto the surface of the iron oxide core, and not its coating. This work lays down the basis for a new generation of SPECT/PET-MR imaging agents in which the BP group could be used to attach functionality to provide targeting, stealth/stability, and radionuclides to Fe?O? nanoparticles using very simple methodology readily amenable to GMP.  相似文献   
62.
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.  相似文献   
63.
Diabetes mellitus is a major risk factor for the development of vascular complications. We hypothesized that hyperglycemia decreases endothelial cell (EC) proliferation and survival via phosphatidylinositol 3-kinase (PI3k) and Akt signaling pathways. We cultured human umbilical vein ECs (HUVEC) in 5, 20, or 40 mM d-glucose. Cells grown in 5, 20, and 40 mM mannitol served as a control for osmotic effects. We measured EC proliferation for up to 15 days. We assessed apoptosis by annexin V and propidium iodide staining and flow cytometry, analyzed cell lysates obtained on culture day 8 for total and phosphorylated PI3k and Akt by Western blot analysis, and measured Akt kinase activity using a GSK fusion protein. HUVEC proliferation was also tested in the presence of pharmacological inhibitors of PI3k-Akt (wortmannin and LY294002) and after transfection with a constitutively active Akt mutant. ECs in media containing 5 mM d-glucose (control) exhibited log-phase growth on days 7-10. d-Glucose at 20 and 40 mM significantly decreased proliferation versus control (P < 0.05 for both), whereas mannitol did not impair EC proliferation. Apoptosis increased significantly in HUVEC exposed to 40 mM d-glucose. d-Glucose at 40 mM significantly decreased tyrosine-phosphorylated PI3k, threonine 308-phosphorylated-Akt, and Akt activity relative to control 5 mM d-glucose. Pharmacological inhibition of PI3k-Akt resulted in a dose-dependent decrease in EC proliferation. Transfection with a constitutively active Akt mutant protected ECs by enhancing proliferation when grown in 20 and 40 mM d-glucose. We conclude that d-glucose regulates Akt signaling through threonine phosphorylation of Akt and that hyperglycemia-impaired PI3k-Akt signaling may promote EC proliferative dysfunction in diabetes.  相似文献   
64.
65.
66.
A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.  相似文献   
67.
The mechanisms by which bacteria adopt and maintain individual shapes remain enigmatic. Outstanding questions include why cells are a certain size, length, and width; why they are uniform or irregular; and why some branch while others do not. Previously, we showed that Escherichia coli mutants lacking multiple penicillin binding proteins (PBPs) display extensive morphological diversity. Because defective sites in these cells exhibit the structural and functional characteristics of improperly localized poles, we investigated the connection between cell division and shape. Here we show that under semipermissive conditions the temperature-sensitive FtsZ84 protein produces branched and aberrant cells at a high frequency in mutants lacking PBP 5, and this phenotype is exacerbated by the loss of additional peptidoglycan endopeptidases. Surprisingly, certain ftsZ84 strains lyse at the nonpermissive temperature instead of filamenting, and inhibition of wild-type FtsZ forces some mutants into tightly wound spirillum-like morphologies. The results demonstrate that significant aspects of bacterial shape are dictated by a previously unrecognized relationship between the septation machinery and ostensibly minor peptidoglycan-modifying enzymes and that under certain circumstances improper FtsZ function can destroy the structural integrity of the cell.  相似文献   
68.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   
69.
70.
In eukaryotes, GPI (glycosylphosphatidylinositol) lipid anchoring of proteins is an abundant post-translational modification. The attachment of the GPI anchor is mediated by GPI-T (GPI transamidase), a multimeric, membrane-bound enzyme located in the ER (endoplasmic reticulum). Upon modification, GPI-anchored proteins enter the secretory pathway and ultimately become tethered to the cell surface by association with the plasma membrane and, in yeast, by covalent attachment to the outer glucan layer. This work demonstrates a novel in vivo assay for GPI-T. Saccharomyces cerevisiae INV (invertase), a soluble secreted protein, was converted into a substrate for GPI-T by appending the C-terminal 21 amino acid GPI-T signal sequence from the S. cerevisiae Yapsin 2 [Mkc7p (Y21)] on to the C-terminus of INV. Using a colorimetric assay and biochemical partitioning, extracellular presentation of GPI-anchored INV was shown. Two human GPI-T signal sequences were also tested and each showed diminished extracellular INV activity, consistent with lower levels of GPI anchoring and species specificity. Human/fungal chimaeric signal sequences identified a small region of five amino acids that was predominantly responsible for this species specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号