首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189648篇
  免费   10373篇
  国内免费   6831篇
  2023年   1284篇
  2022年   1449篇
  2021年   5341篇
  2020年   3613篇
  2019年   4386篇
  2018年   5185篇
  2017年   4228篇
  2016年   7289篇
  2015年   12655篇
  2014年   13451篇
  2013年   13645篇
  2012年   14436篇
  2011年   10648篇
  2010年   7398篇
  2009年   6673篇
  2008年   6037篇
  2007年   5329篇
  2006年   4820篇
  2005年   9756篇
  2004年   8121篇
  2003年   5955篇
  2002年   3241篇
  2001年   3064篇
  2000年   2162篇
  1999年   3287篇
  1998年   1331篇
  1997年   1296篇
  1996年   1091篇
  1995年   1065篇
  1994年   1098篇
  1992年   2905篇
  1991年   2842篇
  1990年   2682篇
  1989年   2555篇
  1988年   2433篇
  1987年   2220篇
  1986年   2009篇
  1985年   2041篇
  1984年   1296篇
  1983年   1029篇
  1979年   1188篇
  1978年   836篇
  1975年   926篇
  1974年   1068篇
  1973年   1058篇
  1972年   1015篇
  1971年   970篇
  1970年   860篇
  1969年   864篇
  1967年   778篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The reactions between plasminogen-activator inhibitor (PAI) and different plasminogen activators were studied in the presence of chromogenic peptide substrates for the enzymes. Our findings suggest that the rate constants for the reactions of PAI with single-chain tissue plasminogen activator (tPA), two-chain tPA, high-Mr urokinase and low-Mr urokinase are high and quite similar (1.6 X 10(7)-3.9 X 10(7) M-1.s-1). A free active site in the enzymes seems to be necessary for their reaction with PAI. Amino acids with antifibrinolytic properties did not interfere with the reactions. However, di-isopropyl phosphorofluoridate-inactivated tPA inhibited the reaction between PAI and all plasminogen activators in a similar way. These findings clearly demonstrated that a 'second-site' interaction, in addition to that between the enzyme active site and the inhibitor 'bait' peptide bond, is of importance for the high reaction rate. The reaction rate between PAI and single-chain tPA in the presence of an activator substrate (D-Ile-Pro-Arg p-nitroanilide) was decreased in the presence of fibrin. Fibrin caused a decrease in the Km for the single-chain tPA-substrate reaction. As a consequence, the 'free' concentration of single-chain tPA in the system decreased in the presence of fibrin, affecting the reaction rate between PAI and single-chain tPA. The phenomenon might be of physiological relevance, in the sense that single-chain tPA bound to fibrin in the presence of plasminogen would be protected against inactivation by PAI.  相似文献   
992.
Phosphate-dependent glutaminase was purified to homogeneity from isolated mitochondria of Ehrlich ascites-tumour cells. The enzyme had an Mr of 135,000 as judged by chromatography on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis displayed two protein bands, with Mr values of 64,000 and 56,000. Two major immunoreactive peptides of Mr values of 65,000 and 57,000 were found by immunoblot analysis using anti-(rat kidney glutaminase) antibodies. The concentration-dependences for both glutamine and phosphate were sigmoidal, with S0.5 values of 7.6 mM and 48 mM, and Hill coefficients of 1.5 and 1.6, respectively. The glutaminase pH optimum was 9. The activation energy of the enzymic reaction was 58 kJ/mol. The enzyme showed a high specificity towards glutamine. A possible explanation for the different kinetic behaviour found for purified enzyme and for isolated mitochondria [Kovacević (1974) Cancer Res. 34, 3403-3407] should be that a conformational change occurs when the enzyme is extracted from the mitochondrial inner membrane.  相似文献   
993.
ADP-ribosylation of histones and non-histone nuclear proteins was studied in isolated nuclei during the naturally synchronous cell cycle of Physarum polycephalum. Aside from ADP-ribosyltransferase (ADPRT) itself, histones and high mobility group-like proteins are the main acceptors for ADP-ribose. The majority of these ADP-ribose residues is NH2OH-labile. ADP-ribosylation of the nuclear proteins is periodic during the cell cycle with maximum incorporation in early to mid G2-phase. In activity gels two enzyme forms with Mr of 115,000 and 75,000 can be identified. Both enzyme forms are present at a constant ratio of 3:1 during the cell cycle. The higher molecular mass form cannot be converted in vitro to the low molecular mass form, excluding an artificial degradation during isolation of nuclei. The ADPRT forms were purified and separated by h.p.l.c. The low molecular mass form is inhibited by different ADPRT inhibitors to a stronger extent and is the main acceptor for auto-ADP-ribosylation. The high molecular mass form is only moderately auto-ADP-ribosylated.  相似文献   
994.
A cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 9 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 52,000 upon SDS/polyacrylamide-gel electrophoresis. The preparation showed a single protein spot with an apparent isoelectric point of 7.8 and an Mr of approx. 52,000 upon two-dimensional isoelectric-focusing-polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 5000 times more efficiently than did the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 catalysed, in addition to 25-hydroxylation of vitamin D3, the 25-hydroxylation of 1 alpha-hydroxyvitamin D3 and the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. The enzyme did not catalyse side-chain cleavage of cholesterol, 11 beta-hydroxylation of deoxycorticosterone, 1 alpha-hydroxylation of 25-hydroxyvitamin D3, hydroxylations of lauric acid and testosterone or demethylation of benzphetamine. The results raise the possibility that the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of C27 steroids are catalysed by the same species of cytochrome P-450 in liver mitochondria. The possible role of the liver mitochondrial cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   
995.
Mouse liver microsomal glutathione transferase was purified in an N-ethylmaleimide-activated as well as an unactivated form. The enzyme had a molecular mass of 17 kDa and a pI of 8.8. It showed cross-reactivity with antibodies raised against rat liver microsomal glutathione transferase, but not with any of the available antisera raised against cytosolic glutathione transferases. The fully N-ethylmaleimide-activated enzyme could be further activated 1.5-fold by inclusion of 1 microM-bromosulphophthalein in the assay system. The latter effect was reversible, which was not the case for the N-ethylmaleimide activation. At 20 microM-bromosulphophthalein the activated microsomal glutathione transferase was strongly inhibited, while the unactivated form was activated 2.5-fold. Inhibitors of the microsomal glutathione transferase from mouse liver showed either about the same I50 values for the activated and the unactivated form of the enzyme, or significantly lower I50 values for the activated form compared with the unactivated form. The low I50 values and the steep slope of the activity-versus-inhibitor-concentration curves for the latter group of inhibitors tested on the activated enzyme indicate a co-operative effect involving conversion of activated enzyme into the unactivated form, as well as conventional inhibition of the enzyme.  相似文献   
996.
Incubation of 25-hydroxyvitamin D3 with kidney cortex mitochondria from 1,25-dihydroxyvitamin D3-treated guinea pigs resulted in the formation of 23,25-dihydroxyvitamin D3 as the major product. The identity of the product was verified by g.c.-m.s. and quantification was performed by h.p.l.c. The rates of the reaction were in the range 1.0-1.8 pmol/min per mg of mitochondrial protein (at 37 degrees C), which were 5-10 times the rates of formation of 24,25-dihydroxyvitamin D3. In mitochondrial preparations from untreated guinea pigs, the rate of 23-hydroxylation was below detection limit (0.02 pmol/min per mg of mitochondrial protein). Fasting the animals for 24 h induced the 23-hydroxylase almost as efficiently as treatment with 1,25-dihydroxyvitamin D3, with a concomitant depression of the 1 alpha-hydroxylase. The 23-hydroxylase reaction required oxidizable substrate, was decreased by low O2 partial pressures and inhibited by CO or the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It was stimulated by the respiratory-chain inhibitors rotenone, antimycin A and KCN. These results indicate that the guinea-pig renal mitochondrial 23-hydroxylase is a cytochrome P-450 and that the reducing equivalents are primarily supplied by NADPH via the energy-dependent transhydrogenase.  相似文献   
997.
The rate of energy-dependent nucleoside triphosphatase (NTPase)-mediated nucleocytoplasmic translocation of poly(A)-containing mRNA [poly(A)+mRNA] across the nuclear envelope is thought to be regulated by poly(A)-sensitive phosphorylation and dephosphorylation of nuclear-envelope protein. Studying the phosphorylation-related inhibition of the NTPase, we found that phosphorylation of one polypeptide of rat liver envelopes by endogenous NI- and NII-like protein kinase was particularly sensitive to poly(A). This polypeptide (106 kDa) was also phosphorylated by nuclear-envelope-bound Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C). Activation of kinase C by tumour-promoting phorbol esters resulted in inhibition of nuclear-envelope NTPase activity and in a concomitant decrease of mRNA (actin) efflux rate from isolated rat liver nuclei. Protein kinase C, but not nuclear envelope NI-like or NII-like protein kinase, was found to be solubilized from the envelope by Triton X-100, whereas the presumable poly(A)-binding site [the 106 kDa polypeptide, representing the putative carrier for poly(A)+mRNA transport] remained bound to this structure. RNA efflux from detergent-treated nuclei lost its susceptibility to phorbol esters. Addition of purified protein kinase C to these nuclei restored the effect of the tumour promoters. Protein kinase C was found to bind also to isolated rat liver nuclear matrices in the absence but not in the presence of ATP. The NII-like nuclear-envelope protein kinase co-purified together with the 106 kDa polypeptide which specifically binds to poly(A) in an ATP-labile linkage.  相似文献   
998.
Aggregates formed by the interaction of cartilage proteoglycan monomers and fragments thereof with hyaluronate were studied by electron microscopy by use of rotary shadowing [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333]. The differences in shape and packing of the proteins bound along the hyaluronate strand in aggregates formed in the presence and in the absence of link protein were examined in detail. The high resolution of the method allowed examination of the involvement in hyaluronate binding of the globular core-protein domains G1, G2 and G3 [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333; Paulsson, Mörgelin, Wiedemann, Beardmore-Gray, Dunham, Hardingham, Heinegård, Timpl & Engel (1987) Biochem. J. 245, 763-772]. Fragments comprising the globular hyaluronate-binding region G1 form complexes with hyaluronate with an appearance of necklace-like structures, statistically interspaced by free hyaluronate strands. The closest centre-to-centre distance found between adjacent G1 domains was 12 nm. Another fragment comprising the binding region G1 and the adjacent second globular domain G2 attaches to hyaluronate only by one globule. Also, the core protein obtained by chondroitinase digestion of proteoglycan monomer binds only by domain G1, with domain G3 furthest removed from the hyaluronate. Globule G1 shows a statistical distribution along the hyaluronate strands. In contrast, when link protein is added, binding is no longer random, but instead uninterrupted densely packed aggregates are formed.  相似文献   
999.
Site-directed mutagenesis to fine-tune enzyme specificity   总被引:1,自引:0,他引:1  
We have used a combination of a genetic selection and oligonucleotide-directed mutagenesis to introduce a series of amino acid replacements for a single residue into Escherichia coli glutaminyl-tRNA synthetase. The mutant enzymes mischarge supF tRNA(Tyr), with glutamine, to varying degrees depending on the polarity of the side chain introduced but apparently not depending on the size or shape of the side chain. These results indicate that repulsive charge-charge interactions may be important for specific recognition of nucleic acids by proteins and illustrate how a mutant, derived from genetic selection, may be further modified in activity by oligonucleotide-directed mutagenesis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号