首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   170篇
  国内免费   3篇
  2022年   11篇
  2021年   27篇
  2020年   18篇
  2019年   21篇
  2018年   21篇
  2017年   28篇
  2016年   58篇
  2015年   98篇
  2014年   102篇
  2013年   150篇
  2012年   168篇
  2011年   146篇
  2010年   100篇
  2009年   80篇
  2008年   112篇
  2007年   88篇
  2006年   82篇
  2005年   76篇
  2004年   78篇
  2003年   66篇
  2002年   56篇
  2001年   55篇
  2000年   49篇
  1999年   37篇
  1998年   21篇
  1997年   21篇
  1996年   26篇
  1995年   11篇
  1994年   24篇
  1993年   12篇
  1992年   24篇
  1991年   28篇
  1990年   19篇
  1989年   12篇
  1988年   18篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   9篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   20篇
  1978年   10篇
  1976年   19篇
  1975年   12篇
  1974年   6篇
  1973年   8篇
  1970年   8篇
排序方式: 共有2174条查询结果,搜索用时 31 毫秒
61.
62.
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.  相似文献   
63.
64.
65.
Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/.  相似文献   
66.
67.
Epstein-Barr virus induced receptor 2 (EBI2), a Gαi-coupled G protein-coupled receptor, is a chemotactic receptor for B, T and dendritic cells (DC). Genetic studies have also implicated EBI2 as a regulator of an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) associated with autoimmune diseases, although the corollary in primary type I IFN-producing cells has not been reported. Here we demonstrate that EBI2 negatively regulates type I IFN responses in plasmacytoid DC (pDCs) and CD11b+ myeloid cells. Activation of EBI2−/− pDCs and CD11b+ cells with various TLR ligands induced elevated type I IFN production compared to wild-type cells. Moreover, in vivo challenge with endosomal TLR agonists or infection with lymphocytic choriomeningitis virus elicited more type I IFNs and proinflammatory cytokines in EBI2−/− mice compared to normal mice. Elevated systemic cytokines occurred despite impaired ability of EBI2-deficient pDCs and CD11b+ cells to migrate from the blood to the spleen and peritoneal cavity under homeostatic conditions. As reported for other immune cells, pDC migration was dependent on the ligand for EBI2, 7α,25-dihydroxycholesterol. Consistent with a cell intrinsic role for EBI2, type I IFN-producing cells from EBI2-deficient mice expressed higher levels of IRF7 and IDIN genes. Together these data suggest a negative regulatory role for EBI2 in balancing TLR-mediated responses to foreign and to self nucleic acids that may precipitate autoimmunity.  相似文献   
68.
69.
Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP‐homologous protein as well as apoptosis signal‐regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial‐related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance.  相似文献   
70.
We investigate the propagation characteristics of the fundamental surface plasmon polariton (SPP) mode of a finite-width metal–dielectric–metal waveguide. By changing the refractive index or the thickness of the dielectric layer of the waveguide, the SPP mode can be transformed from a mode confined in the dielectric layer into a mode confined around the metal corners. There always exists a condition at which the mode field distribution in the dielectric layer becomes almost perfectly uniform along the direction parallel to the metal layers, and this condition is insensitive to the width of the waveguide. It is also possible to obtain an ultra-uniform field distribution by controlling the refractive index of a different dielectric placed on both sides of the waveguide. The waveguide can be used as a basic structure for the realization of nanosized photonic devices and sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号