首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57717篇
  免费   4616篇
  国内免费   4473篇
  2024年   94篇
  2023年   656篇
  2022年   944篇
  2021年   2758篇
  2020年   1920篇
  2019年   2394篇
  2018年   2498篇
  2017年   2021篇
  2016年   2641篇
  2015年   3187篇
  2014年   4027篇
  2013年   4288篇
  2012年   4941篇
  2011年   4571篇
  2010年   3122篇
  2009年   2789篇
  2008年   3201篇
  2007年   2852篇
  2006年   2449篇
  2005年   2009篇
  2004年   1893篇
  2003年   1748篇
  2002年   1469篇
  2001年   1182篇
  2000年   997篇
  1999年   760篇
  1998年   488篇
  1997年   413篇
  1996年   402篇
  1995年   389篇
  1994年   370篇
  1993年   282篇
  1992年   358篇
  1991年   330篇
  1990年   259篇
  1989年   226篇
  1988年   171篇
  1987年   196篇
  1986年   174篇
  1985年   159篇
  1984年   120篇
  1983年   120篇
  1982年   98篇
  1981年   86篇
  1980年   66篇
  1979年   76篇
  1978年   76篇
  1975年   60篇
  1973年   74篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
Russian Journal of Marine Biology - The seasonal accumulation of the amnesic toxin domoic acid (DA) in the tissues of two commercial species of bivalves from Vostok Bay (the Sea of Japan) was...  相似文献   
943.
944.
Inhibition of Yersinia protein tyrosine phosphatase by calix[4]arene mono-, bis-, and tetrakis(methylenebisphosphonic) acids as well as calix[4]arene and thiacalix[4]arene tetrakis(methylphosphonic) acids have been investigated. The kinetic studies revealed that some compounds in this class are potent competitive inhibitors of Yersinia PTP with inhibition constants in the low micromolar range. The binding modes of macrocyclic phosphonate derivatives in the enzyme active center have been explained using computational docking approach. The results obtained indicate that calix[4]arenes are promising scaffolds for the development of inhibitors of Yersinia PTP.  相似文献   
945.
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2‐517), which carries the male sterility (ms1035) gene, and its wild‐type (VF‐11) using isobaric tags for relative and absolute quantification‐based strategy. A total of 8272 proteins are quantified in the 2–517 and VF‐11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω‐carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real‐time PCR (qRT‐PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.  相似文献   
946.
947.
The gut microbiota of intensive care unit (ICU) patients displays extreme dysbiosis associated with increased susceptibility to organ failure, sepsis, and septic shock. However, such dysbiosis is difficult to characterize owing to the high dimensional complexity of the gut microbiota. We tested whether the concept of enterotype can be applied to the gut microbiota of ICU patients to describe the dysbiosis. We collected 131 fecal samples from 64 ICU patients diagnosed with sepsis or septic shock and performed 16S rRNA gene sequencing to dissect their gut microbiota compositions. During the development of sepsis or septic shock and during various medical treatments, the ICU patients always exhibited two dysbiotic microbiota patterns, or ICU-enterotypes, which could not be explained by host properties such as age, sex, and body mass index, or external stressors such as infection site and antibiotic use. ICU-enterotype I (ICU E1) comprised predominantly Bacteroides and an unclassified genus of Enterobacteriaceae, while ICU-enterotype II (ICU E2) comprised predominantly Enterococcus. Among more critically ill patients with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores > 18, septic shock was more likely to occur with ICU E1 (P = 0.041). Additionally, ICU E1 was correlated with high serum lactate levels (P = 0.007). Therefore, different patterns of dysbiosis were correlated with different clinical outcomes, suggesting that ICU-enterotypes should be diagnosed as independent clinical indices. Thus, the microbial-based human index classifier we propose is precise and effective for timely monitoring of ICU-enterotypes of individual patients. This work is a first step toward precision medicine for septic patients based on their gut microbiota profiles.  相似文献   
948.
罗智檜  牛鑫  魏生龙  于海萍  张波  李玉 《菌物学报》2020,39(9):1741-1749
以采自甘肃省祁连山国家级自然保护区菌物保育区的野生侧耳作为试验材料,通过形态学及系统发育分析方法将其鉴定为冷杉侧耳Pleurotus abieticola。对该菌株生物学特性及栽培条件进行初步研究,结果表明:菌丝体最适生长温度为25℃;最适pH为7.0;最适碳源为玉米粉;最适氮源为豆粉;在以棉籽壳、木屑和麸皮为栽培料时,可获得子实体。  相似文献   
949.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   
950.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号