首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   32篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   17篇
  2020年   13篇
  2019年   20篇
  2018年   17篇
  2017年   10篇
  2016年   13篇
  2015年   23篇
  2014年   27篇
  2013年   41篇
  2012年   40篇
  2011年   25篇
  2010年   20篇
  2009年   20篇
  2008年   22篇
  2007年   23篇
  2006年   24篇
  2005年   20篇
  2004年   21篇
  2003年   26篇
  2002年   12篇
  2001年   12篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1991年   3篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   7篇
  1975年   8篇
  1974年   7篇
  1973年   8篇
  1972年   7篇
  1971年   10篇
  1970年   5篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
排序方式: 共有606条查询结果,搜索用时 843 毫秒
51.
52.
Increased iron indices have been associated with the development of diabetes and its complications. In the present study, we have investigated the glucose-induced alteration of iron transporters, divalent metal transporter-1 (DMT-1), iron regulated transporter protein-1 (IREG-1), and transferrin receptor (TfR), in endothelial cell iron accumulation and oxidative stress. Cells were exposed to high glucose levels and subjected to gene expression, protein expression, iron measurement and assessment of oxidative stress. Our results show, for the first time, expression of DMT-1 and IREG-1 in vascular endothelial cells. Our data further indicates upregulation of DMT-1 and IREG-1 mRNA and protein in response to high levels of glucose. TfR, however, exhibited a modest decrease in response to high levels of glucose. Increased expression of DMT-1 and IREG-1 was associated with iron accumulation and oxidative stress. Furthermore, our results show differential expression of iron transporters with treatment of high glucose-exposed cells with two different iron chelators. In conclusion, our study suggests that glucose-induced alteration of iron transporters may arbitrate iron accumulation and oxidative stress in endothelial cells.  相似文献   
53.
The Francisella tularensis subsp. novicida-containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes, for the first few hours after bacterial entry. This modulation in phagosome biogenesis is followed by disruption of the phagosome and bacterial escape into the cytoplasm where they replicate. Here we examined the role of the Francisella pathogenicity island (FPI) protein IglC and its regulator MglA in the intracellular fate of F. tularensis subsp. novicida within human macrophages. We show that F. tularensis mglA and iglC mutant strains are defective for survival and replication within U937 macrophages and human monocyte-derived macrophages (hMDMs). The defect in intracellular replication of both mutants is associated with a defect in disruption of the phagosome and failure to escape into the cytoplasm. Approximately, 80-90% of the mglA and iglC mutants containing phagosomes acquire the late endosomal/lysosomal marker LAMP-2 similar to the wild-type (WT) strain. Phagosomes harbouring the mglA or iglC mutants acquire the lysosomal enzyme Cathepsin D, which is excluded from the phagosomes harbouring the WT strain. In hMDMs in which the lysosomes are preloaded with BSA-gold or Texas Red Ovalbumin, phagosomes harbouring the mglA or the iglC mutants acquire both lysosomal tracers. We conclude that the FPI protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Therefore, acquisition of the FPI, within which iglC is contained, is essential for the pathogenic evolution of F. tularensis to evade lysosomal fusion within human macrophages and cause tularemia. This is the first example of specific virulence factors of F. tularensis that are essential for evasion of fusion of the FCP to lysosomes.  相似文献   
54.
MIF is a proinflammatory cytokine that has been implicated in the pathogenesis of sepsis, arthritis, and other inflammatory diseases. Antibodies against MIF are effective in experimental models of inflammation, and there is interest in strategies to inhibit its deleterious cytokine activities. Here we identify a mechanism of inhibiting MIF pro-inflammatory activities by targeting MIF tautomerase activity. We designed small molecules to inhibit this tautomerase activity; a lead molecule, "ISO-1 ((S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester)," significantly inhibits the cytokine activity in vitro. Moreover, ISO-1 inhibits tumor necrosis factor release from macrophages isolated from LPStreated wild type mice but has no effect on cytokine release from MIFdeficient macrophages. The therapeutic importance of the MIF inhibition by ISO-1 is demonstrated by the significant protection from sepsis, induced by cecal ligation and puncture in a clinically relevant time frame. These results identify ISO-1 as the first small molecule inhibitor of MIF proinflammatory activities with therapeutic implications and indicate the potential of the MIF active site as a novel target for therapeutic interventions in human sepsis.  相似文献   
55.
The marrow stromal cell is the principal source of the key osteoclastogenic cytokine receptor activator of NF-kappaB (RANK) ligand (RANKL). To individualize the role of marrow stromal cells in varying states of TNF-alpha-driven osteoclast formation in vivo, we generated chimeric mice in which wild-type (WT) marrow, immunodepleted of T cells and stromal cells, is transplanted into lethally irradiated mice deleted of both the p55 and p75 TNFR. As control, similarly treated WT marrow was transplanted into WT mice. Each group was administered increasing doses of TNF-alpha. Exposure to high-dose cytokine ex vivo induces exuberant osteoclastogenesis irrespective of in vivo TNF-alpha treatment or whether the recipient animals possess TNF-alpha-responsive stromal cells. In contrast, the osteoclastogenic capacity of marrow treated with lower-dose TNF-alpha requires priming by TNFR-bearing stromal cells in vivo. Importantly, the osteoclastogenic contribution of cytokine responsive stromal cells in vivo diminishes as the dose of TNF-alpha increases. In keeping with this conclusion, mice with severe inflammatory arthritis develop profound osteoclastogenesis and bone erosion independent of stromal cell expression of TNFR. The direct induction of osteoclast recruitment by TNF-alpha is characterized by enhanced RANK expression and sensitization of precursor cells to RANKL. Thus, osteolysis attending relatively modest elevations in ambient TNF-alpha depends upon responsive stromal cells. Alternatively, in states of severe periarticular inflammation, TNF-alpha may fully exert its bone erosive effects by directly promoting the differentiation of osteoclast precursors independent of cytokine-responsive stromal cells and T lymphocytes.  相似文献   
56.
The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor that binds a variety of structurally and functionally unrelated ligands, including advanced glycation endproducts (AGEs), amyloid fibrils, amphoterin, and members of the S100 family of proteins. The receptor has been implicated in the pathology of diabetes as well as in inflammatory processes and tumor cell metastasis. For the present study, the extracellular region of RAGE (exRAGE) was expressed as a soluble, C-terminal hexahistidine-tagged fusion protein in the periplasmic space of Escherichia coli. Proper processing and folding of the purified protein, predicted to contain three immunoglobulin-type domains, was supported by the results of electrospray mass spectroscopy and circular dichroism experiments. Sedimentation velocity experiments showed that exRAGE was primarily monomeric in solution. Binding to several RAGE ligands, including AGE-BSA, immunoglobulin light chain amyloid fibrils, and glycosaminoglycans, was demonstrated using pull-down, dot-blot, or enzyme-linked microplate assays. Using surface plasmon resonance, the interaction of exRAGE with AGE-BSA was shown to fit a two-site model, with KD values of 88 nM and 1.4 microM. The E. coli-derived exRAGE did not bind the advanced glycation endproduct Nepsilon-(carboxymethyl)lysine, as reported for the cellular receptor, and the possible role of RAGE glycosylation in recognition of this ligand is discussed. This new RAGE construct will facilitate detailed studies of RAGE-ligand interactions and provides a platform for preparation of site-directed mutants for future structure/function studies.  相似文献   
57.
The human kallikrein locus on chromosome 19q13.3-13.4 contains kallikrein 1--the tissue kallikrein--and 14 related serine proteases. Recent investigations into their function and evolution have indicated that the present nomenclature for these proteins is inadequate or insufficient. Here we present a new nomenclature in which proteins without proven kininogenase activity are denoted kallikrein-related peptidase. Names are also given to the unique rodent proteins that are closely related to kallikrein 1.  相似文献   
58.
The cDNA for the trypsin-like serine protease gene (TLSP, HGMW-approved symbol PRSS20) has been recently identified. TLSP is expressed in brain and skin tissues but little else is known about this new serine protease gene. In this paper, we describe the complete genomic organization and precise mapping of the TLSP gene. This gene spans 5.3 kb of genomic sequence on chromosome 19q13.3-q13. 4. The gene consists of six exons, the first of which is untranslated. All splice junctions follow the GT/AG rule, and the intron phases are identical to those of other kallikrein-like genes, including zyme (PRSS9), NES1 (PRSSL1), and neuropsin (PRSS19). Fine-mapping of the area indicates that TLSP lies downstream from the PSA, zyme, neuropsin, and NES1 genes. Significant sequence homologies were found between TLSP and other human kallikreins. Furthermore, there is conservation of the catalytic triad (histidine, aspartic acid, serine) and of the number of coding exons (five; the same in all members of the kallikrein gene family). We thus suggest that TLSP is a new member of the human kallikrein gene family. TLSP is expressed in many tissues including cerebellum, prostate, salivary glands, stomach, lung, thymus, small intestine, spleen, liver, and uterus. TLSP expression appears to be regulated by steroid hormones in the breast carcinoma cell line BT-474.  相似文献   
59.
The adenovirus E1A proteins function via protein-protein interactions. By making many connections with the cellular protein network, individual modules of this virally encoded hub reprogram numerous aspects of cell function and behavior. Although many of these interactions have been thoroughly studied, those mediated by the C-terminal region of E1A are less well understood. This review focuses on how this region of E1A affects cell cycle progression, apoptosis, senescence, transformation, and conversion of cells to an epithelial state through interactions with CTBP1/2, DYRK1A/B, FOXK1/2, and importin-α. Furthermore, novel potential pathways that the C-terminus of E1A influences through these connections with the cellular interaction network are discussed.  相似文献   
60.
The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号