首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   53篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   18篇
  2015年   24篇
  2014年   26篇
  2013年   25篇
  2012年   42篇
  2011年   42篇
  2010年   34篇
  2009年   29篇
  2008年   30篇
  2007年   24篇
  2006年   30篇
  2005年   24篇
  2004年   34篇
  2003年   28篇
  2002年   28篇
  2001年   14篇
  2000年   15篇
  1999年   15篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   15篇
  1991年   13篇
  1990年   14篇
  1989年   9篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
排序方式: 共有695条查询结果,搜索用时 15 毫秒
31.
32.
As the importance of personalized therapeutics in aggressive papillary thyroid cancer (PTC) increases, accurate risk stratification is required. To develop a novel prognostic scoring system for patients with PTC (n = 455), we used mRNA expression and clinical data from The Cancer Genome Atlas. We performed variable selection using Network‐Regularized high‐dimensional Cox‐regression with gene network from pathway databases. The risk score was calculated using a linear combination of regression coefficients and mRNA expressions. The risk score and clinical variables were assessed by several survival analyses. The risk score showed high discriminatory power for the prediction of event‐free survival as well as the presence of metastasis. In multivariate analysis, the risk score and presence of metastasis were significant risk factors among the clinical variables that were examined together. In the current study, we developed a risk scoring system that will help to identify suitable therapeutic options for PTC.  相似文献   
33.
34.
35.
36.
Gerstner RB  Pak Y  Draper DE 《Biochemistry》2001,40(24):7165-7173
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.  相似文献   
37.
The adherence of uropathogenic Escherichia coli to the urothelial surface, a critical first step in the pathogenesis of urinary tract infection (UTI), is controlled by three key elements: E. coli adhesins, host receptors, and host defense mechanisms. Although much has been learned about E. coli adhesins and their urothelial receptors, little is known about the role of host defense in the adherence process. Here we show that Tamm-Horsfall protein (THP) is the principal urinary protein that binds specifically to type 1 fimbriated E. coli, the main cause of UTI. The binding was highly specific and saturable and could be inhibited by d-mannose and abolished by endoglycosidase H treatment of THP, suggesting that the binding is mediated by the high-mannose moieties of THP. It is species-conserved, occurring in both human and mouse THPs. In addition, the binding to THP was much greater with an E. coli strain bearing a phenotypic variant of the type 1 fimbrial FimH adhesin characteristic of those prevalent in UTI isolates compared with the one prevalent in isolates from the large intestine of healthy individuals. Finally, a physiological concentration of THP completely abolished the binding of type 1 fimbriated E. coli to uroplakins Ia and Ib, two putative urothelial receptors for type 1 fimbriae. These results establish, on a functional level, that THP contains conserved high-mannose moieties capable of specific interaction with type 1 fimbriae and strongly suggest that this major urinary glycoprotein is a key urinary anti-adherence factor serving to prevent type 1 fimbriated E. coli from binding to the urothelial receptors.  相似文献   
38.
The region of chromosome 2 encompassed by the polymorphic markers D2S378 (centromeric) and D2S391 (telomeric) spans an approximately 10-cM distance in cytogenetic bands 2p15-p21. This area is frequently involved in cytogenetic alterations in human cancers. It also harbors the genes for several genetic disorders, including Type I hereditary nonpolyposis colorectal cancer (HNPCC), familial male precocious puberty (FMPP), Carney complex (CNC), Doyne's honeycomb retinal dystrophy (DHRD), and one form of familial dyslexia (DYX-3). Only a handful of known genes have been mapped to 2p16. These include MSH2, which is responsible for HNPCC, FSHR, the gene responsible for FMPP, EFEMP-1, the gene mutated in DHRD, GTBP, a DNA repair gene, and SPTBN1, nonerythryocytic beta-spectrin. The genes for CNC and DYX-3 remain unknown, due to lack of a contig of this region and its underrepresentation in the existing maps. This report presents a yeast- and bacterial-artificial chromosome (YAC and BAC, respectively) resource for the construction of a sequence-ready map of 2p15-p21 between the markers D2S378 and D2S391 at the centromeric and telomeric ends, respectively. The recently published Genemap'98 lists 146 expressed sequence tags (ESTs) in this region; we have used our YAC-BAC map to place each of these ESTs within a framework of 40 known and 3 newly cloned polymorphic markers and 37 new sequence-tagged sites. This map provides an integration of genetic, radiation hybrid, and physical mapping information for the region corresponding to cytogenetic bands 2p15-p21 and is expected to facilitate the identification of disease genes from the area.  相似文献   
39.
The Werner and Bloom syndromes are caused by loss-of-function mutations in WRN and BLM, respectively, which encode the RecQ family DNA helicases WRN and BLM, respectively. Persons with Werner syndrome displays premature aging of the skin, vasculature, reproductive system, and bone, and those with Bloom syndrome display more limited features of aging, including premature menopause; both syndromes involve genome instability and increased cancer. The proteins participate in recombinational repair of stalled replication forks or DNA breaks, but the precise functions of the proteins that prevent rapid aging are unknown. Accumulating evidence points to telomeres as targets of WRN and BLM, but the importance in vivo of the proteins in telomere biology has not been tested. We show that Wrn and Blm mutations each accentuate pathology in later-generation mice lacking the telomerase RNA template Terc, including acceleration of phenotypes characteristic of latest-generation Terc mutants. Furthermore, pathology not observed in Terc mutants but similar to that observed in Werner syndrome and Bloom syndrome, such as bone loss, was observed. The pathology was accompanied by enhanced telomere dysfunction, including end-to-end chromosome fusions and greater loss of telomere repeat DNA compared with Terc mutants. These findings indicate that telomere dysfunction may contribute to the pathogenesis of Werner syndrome and Bloom syndrome.  相似文献   
40.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A–E) in a stable stem–loop that includes the normal 5′ splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem–loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号