首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   89篇
  国内免费   1篇
  2021年   8篇
  2020年   10篇
  2019年   15篇
  2018年   17篇
  2017年   19篇
  2016年   25篇
  2015年   39篇
  2014年   62篇
  2013年   114篇
  2012年   86篇
  2011年   89篇
  2010年   50篇
  2009年   44篇
  2008年   89篇
  2007年   94篇
  2006年   83篇
  2005年   72篇
  2004年   73篇
  2003年   62篇
  2002年   79篇
  2001年   49篇
  2000年   47篇
  1999年   45篇
  1998年   20篇
  1997年   15篇
  1996年   9篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   32篇
  1991年   24篇
  1990年   21篇
  1989年   37篇
  1988年   19篇
  1987年   14篇
  1986年   14篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   18篇
  1980年   12篇
  1979年   15篇
  1978年   4篇
  1977年   10篇
  1976年   14篇
  1975年   10篇
  1974年   11篇
  1973年   9篇
  1971年   5篇
  1970年   6篇
排序方式: 共有1667条查询结果,搜索用时 15 毫秒
71.
72.
Addition of γ-aminobutyric acid (GABA) and angiotensin converting enzyme (ACE)-inhibitory peptides to the pickles was studied in order to develop a new type of pickles that reduce blood pressure. Based on the outcome of these studies, a new type of fermentation bed composed of rice bran and white miso has been successfully developed. The advantage of such pickles is that they not only contain both GABA and ACE-inhibitory peptides, but also that their taste and flavor are excellent, with colors close to the original ones. The new type of pickles could temporarily reduce blood pressure in two types of rats, spontaneously hypertensive rats and NaCl-sensitive model rats. Thus, the newly developed pickles appear to be beneficial for pickle business.  相似文献   
73.
Starch granules from Chlorella, Chlamydomonas and Scenedesmus, grown heterotro-phically in a medium containing organic carbon sources, were isolated by means of the toluol treatment of the sonicate of alga. The toluol treatment separated the starch granules in the water layer from the cells and cell debris coagulated in the upper toluol layer.

The starch granules of Chlorella vulgaris and Chlamydomonas sp. were composed of amylose (12 to 3%) and amylopectin. The amylose content of the starch granules of Scenedesmus basilensis was 22 %. All the X-ray diffraction patterns of algal starch obtained in this investigation were of the A-type, identical to that of corn starch.  相似文献   
74.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   
75.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   
76.
The processes and mechanisms underlying the diversification of host–microbe endosymbiotic associations are of evolutionary interest. Here we investigated the bacteriocyte-associated primary symbionts of weevils wherein the ancient symbiont Nardonella has experienced two independent replacement events: once by Curculioniphilus symbiont in the lineage of Curculio and allied weevils of the tribe Curculionini, and once by Sodalis-allied symbiont in the lineage of grain weevils of the genus Sitophilus. The Curculioniphilus symbiont was detected from 27 of 36 Curculionini species examined, the symbiont phylogeny was congruent with the host weevil phylogeny, and the symbiont gene sequences exhibited AT-biased nucleotide compositions and accelerated molecular evolution. These results suggest that the Curculioniphilus symbiont was acquired by an ancestor of the tribe Curculionini, replaced the original symbiont Nardonella, and has co-speciated with the host weevils over evolutionary time, but has been occasionally lost in several host lineages. By contrast, the Sodalis-allied symbiont of Sitophilus weevils exhibited no host–symbiont co-speciation, no AT-biased nucleotide compositions and only moderately accelerated molecular evolution. These results suggest that the Sodalis-allied symbiont was certainly acquired by an ancestor of the Sitophilus weevils and replaced the original Nardonella symbiont, but the symbiotic association must have experienced occasional re-associations such as new acquisitions, horizontal transfers, replacements and/or losses. We detected Sodalis-allied facultative symbionts in populations of the Curculionini weevils, which might represent potential evolutionary sources of the Sodalis-allied primary symbionts. Comparison of these newcomer bacteriocyte-associated symbiont lineages highlights potential evolutionary trajectories and consequences of novel symbionts after independent replacements of the same ancient symbiont.  相似文献   
77.
Sandhoff disease (SD) is a glycosphingolipid storage disease that arises from mutations in the Hexb gene and the resultant deficiency in β-hexosaminidase activity. This deficiency results in aberrant lysosomal accumulation of the ganglioside GM2 and related glycolipids, and progressive deterioration of the central nervous system. Dysfunctional glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. Induced pluripotent stem cell (iPSC) technology offers new opportunities for both elucidation of the pathogenesis of diseases and the development of stem cell-based therapies. Here, we report the generation of disease-specific iPSCs from a mouse model of SD. These mouse model-derived iPSCs (SD-iPSCs) exhibited pluripotent stem cell properties and significant accumulation of GM2 ganglioside. In lineage-directed differentiation studies using the stromal cell-derived inducing activity method, SD-iPSCs showed an impaired ability to differentiate into early stage neural precursors. Moreover, fewer neurons differentiated from neural precursors in SD-iPSCs than in the case of the wild type. Recovery of the Hexb gene in SD-iPSCs improved this impairment of neuronal differentiation. These results provide new insights as to understanding the complex pathogenic mechanisms of SD.  相似文献   
78.
The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.  相似文献   
79.
The in ovo electroporation in chicken embryos has widely been used as a powerful tool to study roles of genes during embryogenesis. However, the conventional electroporation technique fails to retain the expression of transgenes for more than several days because transgenes are not integrated into the genome. To overcome this shortcoming, we have developed a transposon-mediated gene transfer, a novel technique in chicken manipulations. It was previously reported that the transposon Tol2, originally found in medaka fish, facilitates an integration of a transgene into the genome when co-acting with Tol2 transposase. In this study, we co-electroporated a plasmid containing a CAGGS-EGFP cassette cloned in the Tol2 construct along with a transposase-encoding plasmid into early presomitic mesoderm or optic vesicles of chicken embryos. This resulted in persistent expression of EGFP at least until embryonic day 8 (E8) and E12 in somite-derived tissues and developing retina, respectively. The integration of the transgene was confirmed by genomic Southern blotting using chicken cultured cells. We further combined this transposon-mediated gene transfer with the tetracycline-dependent conditional expression system that we also developed recently. With this combined method, expression of a stably integrated transgene could be experimentally induced upon tetracycline administration at relatively late stages such as E6, where a variety of organogenesis are underway. Thus, the techniques proposed in this study provide a novel approach to study the mechanisms of late organogenesis, for which chickens are most suitable model animals.  相似文献   
80.
We have developed two experimental methods for observing Escherichia coli RecA-DNA filament under a fluorescence microscope. First, RecA-DNA filaments were visualized by immunofluorescence staining with anti-RecA monoclonal antibody. Although the detailed filament structures below submicron scale were unable to be measured accurately due to optical resolution limit, this method has an advantage to analyse a large number of RecA-DNA filaments in a single experiment. Thus, it provides a reliable statistical distribution of the filament morphology. Moreover, not only RecA filament, but also naked DNA region was visualized separately in combination with immunofluorescence staining using anti-DNA monoclonal antibody. Second, by using cysteine derivative RecA protein, RecA-DNA filament was directly labelled by fluorescent reagent, and was able to observe directly under a fluorescence microscope with its enzymatic activity maintained. We showed that the RecA-DNA filament disassembled in the direction from 5' to 3' of ssDNA as dATP hydrolysis proceeded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号