首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29209篇
  免费   2159篇
  国内免费   1657篇
  2024年   41篇
  2023年   324篇
  2022年   475篇
  2021年   1395篇
  2020年   979篇
  2019年   1211篇
  2018年   1190篇
  2017年   858篇
  2016年   1252篇
  2015年   1922篇
  2014年   2158篇
  2013年   2322篇
  2012年   2662篇
  2011年   2341篇
  2010年   1487篇
  2009年   1262篇
  2008年   1544篇
  2007年   1361篇
  2006年   1191篇
  2005年   999篇
  2004年   809篇
  2003年   704篇
  2002年   541篇
  2001年   483篇
  2000年   381篇
  1999年   418篇
  1998年   248篇
  1997年   274篇
  1996年   255篇
  1995年   218篇
  1994年   220篇
  1993年   151篇
  1992年   218篇
  1991年   184篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
In the process of biogenous weathering of Beacon sandstone in the McMurdo Dry Valleys (Ross Desert), Antarctica, periods of microbial growth, on the time scale of 103-104 years, alternate with sudden exfoliation events. The present study addressed the question of whether microbial growth is continuous between exfoliation events or whether each exfoliation is followed by a period of comparatively rapid growth and then an extended period of steady state. The color intensity (Munsell lightness value) of the rock surface is an indicator of relative age of the crust within the exfoliation cycle, permitting measurement of changes in microbial biomass on a geological time scale. Results indicate that microbial growth is continuous and that exfoliation occurs when the microbial biomass reaches the carrying capacity of the cryptoendolithic habitat.  相似文献   
942.
This article presents a study of struvite formation in liquid medium induced by the sulfate-reducing bacterium Acinetobacter calcoaceticus SRB4, a strain isolated from river sediment. We identified the bacterial strain A. calcoaceticus SRB4 and analyzed its micromorphology. The minerals formed were studied with an electroprobe microanalyzer, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetry, differential thermogravimetry, and differential scanning calorimetry. Acinetobacter calcoaceticus SRB4 was found to induce struvite precipitation, whereas sterile control cultures did not. Many transparent stick-shaped struvite precipitates were distributed at the bottom of the conical flasks in the experimental group. Most bacteria were spherical and a large quantity of spherical struvite particles (less than 200 nm in diameter) adhered to the bacterial surface. An electron probe microanalysis showed that the precipitates contained C, O, P, Mg, and other elements. Fourier transformation infrared spectra showed that the precipitates contained crystalline water, NH4+, and PO43? groups. X-ray diffraction spectra showed that the precipitates were struvite crystals, with preferential orientation and lattice distortion. Thermogravimetry showed that the weight loss was caused by the evaporation of crystalline water at temperatures lower than 136°C and the release of ammonia from struvite at temperatures of 136–228.5°C. In this article, we discuss the possible mechanism of struvite formation and the possible role played by A. calcoaceticus SRB4. Our study extends our understanding of the phosphate biomineralization mechanism and should prove useful in recycling phosphorus in wastewater.  相似文献   
943.
Iodine excess is emerging as a new focus. A better understanding of its hazardous effects on the liver will be of great benefit to health. The aim of this study is to illustrate the effects of iodine excess on hepatic lipid homeostasis and explore its possible mechanisms. One hundred twenty BaLB/c mice were given iodine at different levels (0, 0.3, 0.6, 1.2, 2.4, and 4.8 mg I/L) in drinking water for 1 or 3 months. Lipid parameters and serum thyroid hormones were measured. Hepatic type 1 deiodinase activity and oxidative stress parameters were evaluated. The mRNA expression of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) was detected by real-time polymerase chain reaction. Dose-dependent increase of hepatic triglyceride content was detected (r?=?0.680, P?<?0.01) in iodine-loaded groups. Evident hepatic steatosis was observed in 2.4 and 4.8 mg I/L iodine-loaded groups. The activities of antioxidant enzymes (glutathione peroxidase and superoxide dismutase) were decreased, and the malondialdehyde level was increased by excessive iodine in both serum and liver in a dose-dependent manner, accompanying the decrease of hepatic D1 activity. That resulted in the increase of serum total thyroxine and the decrease of serum total triiodothyronine in iodine-loaded groups. The mRNA expression of SREBP-1c and FAS was increased in iodine-loaded groups in response to the change of serum triiodothyronine. Present findings demonstrated that iodine excess could dose dependently induce hepatic steatosis. Furthermore, our data suggested that the disturbance of thyroid hormone metabolism involving oxidative stress may play a critical role in iodine excess-induced hepatic steatosis.  相似文献   
944.
Although studies have shown that arsenic exposure can induce apoptosis in a variety of cells, the exact molecular mechanism of chronic arsenicosis remains unclear. Based on our previous study on human serum, the present study was to determine whether pigment epithelium-derived factor (PEDF) plays a role in the damage induced by chronic arsenic exposure in a rat model and to explore the possible signaling pathway involved. Thirty male Wistar rats were randomly divided into three groups and the arsenite doses administered were 0, 10, and 50 mg/L, respectively. The experiment lasted for 6 months. Our results showed that level of arsenic increased significantly in serum, liver, brain, and kidney in arsenic-exposed groups. It was indicated that PEDF protein was widely distributed in the cytoplasm of various types of cells in liver, brain, and kidney. PEDF protein level was only changed when the arsenite dose reached 50 mg/L in liver and brain, whereas it was not changed in the kidney. In order to investigate the possible mechanism of PEDF-exerted damages upon arsenite exposure, apoptosis in liver and brain was assessed. The proportion of apoptotic cells gradually increased with increasing arsenic administration. The ratio of Bax/Bcl-2 in the high arsenic group (50 mg/L) was significantly higher than that in the control group. Therefore, we thought PEDF played a role in cell apoptosis of liver and brain which induced by sodium arsenite exposure, and the results also demonstrated that Bax and Bcl-2 might be two key targets in the action of PEDF.  相似文献   
945.
Bacillus cereus strain XZM002 isolated from high arsenic aquifer sediments of Datong Basin was applied to examine the effects of arsenate stress on antioxidant enzyme activities, lipid peroxidation levels and cell growth inhibition rate. After 2 d exposure, the cell growth inhibition rate enhanced with an increase of As(V) concentrations (0, 800, 1600 μg/l). Reactive oxygen species and glutathione contents, lipid peroxidation levels, and antioxidant enzymes (glutathione peroxidase, and other three) activities of the treated cells were significantly higher than those of the controls during 3 d exposure (p < 0.05). Besides, the levels of nine parameters reached maximum after 2 d exposure and increased significantly with increasing arsenate stress (p < 0.05). However, they returned to levels similar to those of the control on the fourth day of exposure. The results suggested that the antioxidant defense system in B. cereus strain XZM002 could protect the cells from oxidative damage induced by arsenate.  相似文献   
946.
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.  相似文献   
947.
948.
949.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   
950.
Retinoids are vitamin A derivatives with diverse biological functions. Both natural and artificial retinoids have been used as therapeutic reagents to treat human diseases, but not all retinoid actions are understood mechanistically. Plasma retinol binding protein (RBP) is the principal and specific carrier of vitamin A in the blood. STRA6 is the membrane receptor for RBP that mediates cellular vitamin A uptake. The effects of retinoids or related compounds on the receptor’s vitamin A uptake activity and its catalytic activities are not well understood. In this study, we dissected the membrane receptor-mediated vitamin A uptake mechanism using various retinoids. We show that a subset of retinoids strongly stimulates STRA6-mediated vitamin A release from holo-RBP. STRA6 also catalyzes the exchange of retinol in RBP with certain retinoids. The effect of retinoids on STRA6 is highly isomer-specific. This study provides unique insights into the RBP receptor’s mechanism and reveals that the vitamin A transport machinery can be a target of retinoid-based drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号