首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   123篇
  国内免费   101篇
  2023年   22篇
  2022年   18篇
  2021年   92篇
  2020年   52篇
  2019年   59篇
  2018年   56篇
  2017年   51篇
  2016年   70篇
  2015年   143篇
  2014年   107篇
  2013年   146篇
  2012年   194篇
  2011年   174篇
  2010年   102篇
  2009年   69篇
  2008年   122篇
  2007年   98篇
  2006年   83篇
  2005年   78篇
  2004年   59篇
  2003年   65篇
  2002年   43篇
  2001年   57篇
  2000年   41篇
  1999年   54篇
  1998年   16篇
  1997年   13篇
  1996年   14篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1967年   2篇
  1966年   2篇
  1956年   2篇
排序方式: 共有2276条查询结果,搜索用时 156 毫秒
981.
Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2fl/fl and Osr2-Cre; Smad4fl/fl palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4fl/fl mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis.  相似文献   
982.
Normal tissue and tumour grafts expressing the same alloantigens often elicit distinct immune responses whereby only normal tissue is rejected. To investigate the mechanisms that underlie these distinct outcomes, we compared the responses of adoptively transferred HY-specific conventional (CD8 and CD4) or regulatory T (Treg) cells in mice bearing HY-expressing tumour, syngeneic male skin graft or both. For local T cell priming, T cell re-circulation, graft localization and retention, skin grafts were more efficient than tumours. Skin grafts were also capable of differentiating CD4 T cells into functional Th1 cells. Donor T cell responses were inversely correlated with tumour progression. When skin graft and tumour transplants were performed sequentially, contemporary graft and tumour burden enhanced CD8 but reduced CD4 T cell responses causing accelerated skin-graft rejection without influencing tumour growth. Although both skin grafts and tumours were able to expand HY-specific Treg cells in draining lymph node (dLN), the proportion of tumour-infiltrating Treg cells was significantly higher than that within skin grafts, correlating with accelerated tumour growth. Moreover, there was a higher level of HY antigen presentation by host APC in tumour-dLN than in graft-dLN. Finally, tumour tissues expressed a significant higher level of IDO, TGFβ, IL10 and Arginase I than skin grafts, indicating that malignant but not normal tissue represents a stronger immunosuppressive environment. These comparisons provide important insight into the in vivo mechanisms that conspire to compromise tumour-specific adaptive immunity and identify new targets for cancer immunotherapy.  相似文献   
983.
984.
A series of new strobilurin–pyrimidine analogs were designed and synthesized based on the structures of our previously discovered antiproliferative compounds I and II. Biological evaluation with two human cancer cell lines (A549 and HL60) showed that most of these compounds possessed moderate to potent antiproliferative activity. Two potent candidates (8f, IC50 = 2.2 nM and 11d, IC50 = 3.4 nM) were identified with nanomolar activity against leukemia cancer cell line HL60 for further development. This activity represents a 1000- to 2500-fold improvement compared to the parent compounds I and II and is 20- to 30-fold better than the chemotherapy drug, doxorubicin. The present work provides strong incentive for further development of these strobilurin–pyrimidine analogs as potential antitumor agents for the treatment of leukemia.  相似文献   
985.
986.
Single-nucleotide polymorphisms (SNPs) in the coding and untranslated regions of heat shock 70 kDa protein 1A (HSP70A1A), an inducible molecular chaperone that is responsible for cellular protection against heat stress, have been reported as being associated with heat tolerance. A fragment of the HSP70A1A gene was amplified in Chinese Holstein cattle and eight novel mutations were found. We performed comprehensive linkage disequilibrium (LD) and haplotype analyses of the eight SNPs of the HSP70A1A gene and examined their involvement in heat resistance in 600 Chinese Holstein cattle. Our results revealed the presence of significant differences between individuals carrying haplotype 1 and those without haplotype 1 for most of the heat-tolerance traits. Haplotype 1 increased the risk of heat stress; however, association analysis of its combination with haplotype 2 showed the lowest rectal temperature and red blood cell K+ level, moderate respiratory rate, and the highest red blood cell NKA level, suggesting a heterozygote advantage in the penetration of the phenotype. Protein expression levels in white blood cells among haplotype combinations further confirmed the hypothesis that heterozygotes for haplotypes 1 and 2 are more sensitive to heat stress. We presume that these mutations may be useful in the future as molecular genetic markers to assist selection for heat tolerance in cattle.  相似文献   
987.
988.
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.  相似文献   
989.
990.
We repurposed existing genotypes in DNA biobanks across the Electronic Medical Records and Genomics network to perform a genome-wide association study for primary hypothyroidism, the most common thyroid disease. Electronic selection algorithms incorporating billing codes, laboratory values, text queries, and medication records identified 1317 cases and 5053 controls of European ancestry within five electronic medical records (EMRs); the algorithms'' positive predictive values were 92.4% and 98.5% for cases and controls, respectively. Four single-nucleotide polymorphisms (SNPs) in linkage disequilibrium at 9q22 near FOXE1 were associated with hypothyroidism at genome-wide significance, the strongest being rs7850258 (odds ratio [OR] 0.74, p = 3.96 × 10−9). This association was replicated in a set of 263 cases and 1616 controls (OR = 0.60, p = 5.7 × 10−6). A phenome-wide association study (PheWAS) that was performed on this locus with 13,617 individuals and more than 200,000 patient-years of billing data identified associations with additional phenotypes: thyroiditis (OR = 0.58, p = 1.4 × 10−5), nodular (OR = 0.76, p = 3.1 × 10−5) and multinodular (OR = 0.69, p = 3.9 × 10−5) goiters, and thyrotoxicosis (OR = 0.76, p = 1.5 × 10−3), but not Graves disease (OR = 1.03, p = 0.82). Thyroid cancer, previously associated with this locus, was not significantly associated in the PheWAS (OR = 1.29, p = 0.09). The strongest association in the PheWAS was hypothyroidism (OR = 0.76, p = 2.7 × 10−13), which had an odds ratio that was nearly identical to that of the curated case-control population in the primary analysis, providing further validation of the PheWAS method. Our findings indicate that EMR-linked genomic data could allow discovery of genes associated with many diseases without additional genotyping cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号