首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   107篇
  国内免费   1篇
  2021年   12篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   23篇
  2014年   19篇
  2013年   23篇
  2012年   29篇
  2011年   25篇
  2010年   17篇
  2008年   19篇
  2007年   25篇
  2006年   27篇
  2005年   25篇
  2004年   31篇
  2003年   17篇
  2002年   34篇
  2001年   25篇
  2000年   20篇
  1999年   29篇
  1998年   10篇
  1997年   12篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   13篇
  1992年   28篇
  1991年   23篇
  1990年   12篇
  1989年   16篇
  1988年   24篇
  1987年   29篇
  1986年   25篇
  1985年   26篇
  1984年   10篇
  1983年   21篇
  1982年   10篇
  1981年   6篇
  1980年   11篇
  1979年   14篇
  1978年   19篇
  1977年   10篇
  1976年   8篇
  1975年   11篇
  1974年   13篇
  1973年   8篇
  1971年   6篇
  1970年   10篇
  1967年   5篇
  1966年   5篇
排序方式: 共有871条查询结果,搜索用时 15 毫秒
101.
Mokeichev A  Okun M  Barak O  Katz Y  Ben-Shahar O  Lampl I 《Neuron》2007,53(3):413-425
It was recently discovered that subthreshold membrane potential fluctuations of cortical neurons can precisely repeat during spontaneous activity, seconds to minutes apart, both in brain slices and in anesthetized animals. These repeats, also called cortical motifs, were suggested to reflect a replay of sequential neuronal firing patterns. We searched for motifs in spontaneous activity, recorded from the rat barrel cortex and from the cat striate cortex of anesthetized animals, and found numerous repeating patterns of high similarity and repetition rates. To test their significance, various statistics were compared between physiological data and three different types of stochastic surrogate data that preserve dynamical characteristics of the recorded data. We found no evidence for the existence of deterministically generated cortical motifs. Rather, the stochastic properties of cortical motifs suggest that they appear by chance, as a result of the constraints imposed by the coarse dynamics of subthreshold ongoing activity.  相似文献   
102.
Membrane tension is becoming recognized as an important mechanical regulator of motile cell behavior. Although membrane-tension measurements have been performed in various cell types, the tension distribution along the plasma membrane of motile cells has been largely unexplored. Here, we present an experimental study of the distribution of tension in the plasma membrane of rapidly moving fish epithelial keratocytes. We find that during steady movement the apparent membrane tension is ∼30% higher at the leading edge than at the trailing edge. Similar tension differences between the front and the rear of the cell are found in keratocyte fragments that lack a cell body. This front-to-rear tension variation likely reflects a tension gradient developed in the plasma membrane along the direction of movement due to viscous friction between the membrane and the cytoskeleton-attached protein anchors embedded in the membrane matrix. Theoretical modeling allows us to estimate the area density of these membrane anchors. Overall, our results indicate that even though membrane tension equilibrates rapidly and mechanically couples local boundary dynamics over cellular scales, steady-state variations in tension can exist in the plasma membranes of moving cells.  相似文献   
103.
Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein–ligand interactions. Such mimics of protein binding sites can currently be generated through structure‐based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin‐2 (Fas) because the structure and function of this complex is well understood. Structure‐based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE‐specific peptide–Fas interaction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
104.
The primary aims of this study were to evaluate the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) on gastric emptying (GE) of, and the blood pressure (BP), glycemic, insulin, and incretin responses to, oral glucose in older subjects. Eight healthy subjects (4 males and 4 females, aged 70.9 +/- 1.3 yr) were studied on two separate days, in double-blind, randomized order. Subjects received an intravenous infusion of either l-NAME (180 mug.kg(-1).h(-1)) or saline (0.9%) at a rate of 3 ml/min for 150 min. Thirty minutes after the commencement of the infusion (0 min), subjects consumed a 300-ml drink containing 50 g glucose labeled with 20 MBq (99m)Tc-sulfur colloid, while sitting in front of a gamma camera. GE, BP (systolic and diastolic), heart rate (HR), blood glucose, plasma insulin, and incretin hormones, glucose-dependant insulinotropic-polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), were measured. l-NAME had no effect on GE, GIP, and GLP-1. Between -30 and 0 min l-NAME had no effect on BP or HR. After the drink (0-60 min), systolic and diastolic BP fell (P < 0.05) and HR increased (P < 0.01) during saline; these effects were attenuated (P < 0.001) by l-NAME. Blood glucose levels between 90 and 150 min were higher (P < 0.001) and plasma insulin were between 15 and 150 min less (P < 0.001) after l-NAME. The fall in BP, increase in HR, and stimulation of insulin secretion by oral glucose in older subjects were mediated by NO mechanisms by an effect unrelated to GE or changes in incretin hormones.  相似文献   
105.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   
106.
Two novel hybrid molecules 3-O-sulfo-alpha/beta-galactosylceramide 3 and 4, which are derived from an immunostimulatory agent alpha-GalCer 1 and self-glycolipid ligand sulfatide 2, were designed and synthesized. Compound 3 was shown to efficiently stimulate human NKT cells to secret IL-4 and IFN-gamma, with activities similar to 1, suggesting that modification of the 3'-OH position of the galactose moiety with sulfate has no significant effect on NKT cell stimulation. As a comparison, the beta-isomer 4 has no affinity to NKT cells, which demonstrates that the alpha-glycosidic bond of galactosylceramide is crucial to the NKT cells activation.  相似文献   
107.
We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin-sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor-mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.  相似文献   
108.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-beta1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-beta1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF-beta receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-beta1 treatment followed by a more delayed activation of the pro-survival phosphatidylinositol 3-kinase-protein kinase B (PKB)/Akt pathway. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a p38 kinase-deficient mutant protein inhibits TGF-beta1-induced PKB/Akt phosphorylation. Conditioned medium from TGF-beta1-treated cells rapidly induces PKB/Akt activation in an SB203580- and suramin-sensitive manner, suggesting p38 MAPK-dependent production of a secreted growth factor that activates this pro-survival pathway by an autocrine/paracrine mechanism. Inhibition of the phosphatidylinositol 3-kinase-PKB/Akt pathway blocks TGF-beta1-induced resistance to apoptosis. These results demonstrate the activation of a novel TGF-beta1-activated pro-survival/anti-apoptotic signaling pathway in mesenchymal cells/fibroblasts that may explain cell-specific actions of TGF-beta1 and provide mechanistic insights into its pro-fibrotic and tumor-promoting effects.  相似文献   
109.
110.
Autoantibodies to the GluR3-subtype of AMPA/glutamate receptors are found in the sera and cerebrospinal fluid of some individuals with epilepsy. They could possibly play a role in the pathophysiology of epilepsy since anti-GluR3 sera display glutamatergic agonist activity. We have investigated here the ability of affinity-purified antibodies (Abs) directed against the immunogenic peptide GluR3B (amino-acid 372–395) to interact with and activate recombinant GluR3-receptor channels expressed by Xenopus oocytes. We report here that the affinity-purified anti-GluR3B Abs directly activate GluR3-containing homomeric and heteromeric AMPA receptor complexes without the requirement of neuronal, glial or blood ancillary molecules. We present some of the properties of the purified anti-GluR3B Abs and discuss the possible physiological or pathological consequences of their activation of glutamate receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号