首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2740篇
  免费   143篇
  2023年   4篇
  2022年   5篇
  2021年   42篇
  2020年   26篇
  2019年   23篇
  2018年   42篇
  2017年   42篇
  2016年   53篇
  2015年   93篇
  2014年   115篇
  2013年   165篇
  2012年   180篇
  2011年   192篇
  2010年   133篇
  2009年   126篇
  2008年   186篇
  2007年   195篇
  2006年   167篇
  2005年   157篇
  2004年   176篇
  2003年   164篇
  2002年   181篇
  2001年   27篇
  2000年   21篇
  1999年   32篇
  1998年   34篇
  1997年   32篇
  1996年   19篇
  1995年   28篇
  1994年   19篇
  1993年   33篇
  1992年   12篇
  1991年   10篇
  1990年   13篇
  1989年   13篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   13篇
  1983年   9篇
  1982年   15篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   6篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1965年   3篇
排序方式: 共有2883条查询结果,搜索用时 31 毫秒
51.
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.  相似文献   
52.

We performed expression and functional analysis of mouse CREB3 regulatory factor (CREBRF) in Neuro2a cells by constructing several expression vectors. Overexpressed full-length (FL) CREBRF protein was stabilized by MG132; however, the intrinsic CREBRF expression in Neuro2a cells was negligible under all conditions. On the other hand, N- or C-terminal deletion of CREBRF influenced its stability. Cotransfection of CREBRF together with GAL4-tagged FL CREB3 increased luciferase reporter activity, and only the N-terminal region of CREBRF was sufficient to potentiate luciferase activity. Furthermore, this positive effect of CREBRF was also observed in cells expressing GAL4-tagged cleaved CREB3, although CREBRF hardly influenced the protein stability of NanoLuc-tagged cleaved CREB3 or intracellular localization of EGFP-tagged one. In conclusion, this study suggests that CREBRF, a quite unstable proteasome substrate, positively regulates the CREB3 pathway, which is distinct from the canonical ER stress pathway in Neuro2a cells.

  相似文献   
53.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   
54.
55.
New records of four species (Lema lacertosa Lacordaire, 1845, Lema diversipes Pic, 1921, Lema cyanella (Linnaeus, 1758), Lema trivittata trivittata Say, 1824 and additional information on one recently recorded species (Lema solani Fabricius, 1798) are reported for Taiwan. Lema diversipes Pic, 1921 is removed from synonymy with Lema lacertosa Lacordaire, 1845; both species are redescribed. A lectotype is designated for Lema phungi Pic, 1924. The synonymies of Lema phungi Pic, 1924 and Lema jeanvoinei Pic, 1932 with Lema lacertosa Lacordaire, 1845 are supported. A revised key to the known species in Taiwan is provided.  相似文献   
56.
In Lambir Hills National Park, Sarawak, Malaysia, there are four species of processional termites that coexist: Hospitalitermes hospitalis, H. lividiceps, H. rufus and Longipeditermes longipes. This paper presents the results of our investigation on the spatial distribution of nests and the foraging activities of the four species in coexistence. The results show that there are fairly marked differences in nesting sites, as well as in foraging activities, among the four species. It is noteworthy that H. rufus inhabits only the canopy area over 20 m above ground, apparently segregated from the other three species, and that their foraging activities are limited also to tree canopies over 10 m above ground. In contrast, L. longipes nests underground and forages exclusively on the forest floor. Hospitalitermes hospitalis and H. lividiceps inhabit and forage over wide areas, from the forest floor to tree canopies. The upper parts of the tree canopy (over 10 m) are also foraging territories of the secluded H. rufus, but there were no observations of simultaneous foraging of the three Hospitalitermes species in the same canopy areas.  相似文献   
57.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   
58.
59.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号