首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   52篇
  国内免费   3篇
  2021年   11篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2016年   9篇
  2015年   25篇
  2014年   23篇
  2013年   48篇
  2012年   33篇
  2011年   34篇
  2010年   23篇
  2009年   19篇
  2008年   35篇
  2007年   38篇
  2006年   29篇
  2005年   43篇
  2004年   44篇
  2003年   42篇
  2002年   46篇
  2001年   11篇
  2000年   9篇
  1999年   14篇
  1998年   13篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   12篇
  1993年   8篇
  1992年   5篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   9篇
  1980年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   5篇
排序方式: 共有737条查询结果,搜索用时 31 毫秒
91.
Epidermal growth factor (EGF) and its receptor (EGFR) are involved in hormone-refractory growth and poor prognosis of a subgroup of human prostate cancer. In this communication, we investigated the regulation of PSA by the EGFR signaling pathway using LNCaP C-81 prostate cancer cells. Administration of EGF stimulated the growth of LNCaP C-81 cells, however, PSA expression and secretion were suppressed. An EGFR inhibitor, AG1478, abrogated the PSA suppression effect by EGF, in concurrence with the suppression of tyro-phosphorylation levels of EGFR. Interestingly, the AR level was also decreased in EGF-treated LNCaP C-81 cells. Moreover, LY294002, but not PD98059, inhibited the PSA and AR suppression effect by EGF in concurrence with the suppression of phosphorylation levels of Akt. In conclusion, our results strongly suggest the existence of a novel androgen-independent PSA regulatory mechanism, i.e., the EGFR signaling pathway negatively regulates PSA expression which may be induced by the alteration of AR expression via the PI3K-Akt pathway in LNCaP C-81 cells.  相似文献   
92.
Mortality of mouse keratinocytes Pam212 that were irradiated with ultraviolet-B (UVB) was shown to be repressed by pre-irradiated administration with L-ascorbic acid (Asc) or more markedly with Asc-2-O-phosphate (Asc2P), but not with dehydroascorbic acid (DehAsc) or Asc-2-O-alpha-glucoside (Asc2G), although not repressed by post-irradiated administration. The cytoprotection by Asc2P was restricted against UVB below 5-20 mJ/cm2, and exhibited markedly by administration for a period over 2 h, which may be caused by intracellular Asc that was accumulated via dephosphorylation of Asc2P and was increased, 6-24 h after, to levels above twice as abundant as those of Asc-administration. Pre-irradiated Asc2P-administration slightly repressed a DNA ladder-like electrophoretic pattern for UVB-irradiated keratinocytes, containing the histone-bound DNA fragments as shown by ELISA assay, and appreciably repressed the DNA-3'OH cleavage terminals as shown by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) stain. Thus, prevention of UVB-induced cell death by Asc2P was shown to occur concurrently with inhibition of DNA cleavages and enrichment of intracellular Asc.  相似文献   
93.
Intracellular vesicle traffic plays an essential role in the establishment and maintenance of organelle identity and biosynthetic transport. We have identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. Recently, we have found that α-taxilin is over-expressed in malignant tissues including hepatocellular carcinoma and renal cell carcinoma. However, a precise role of α-taxilin in intracellular vesicle traffic and carcinogenesis remains unclear. Then, we first investigated here the intracellular distribution of α-taxilin in Hela cells. Immunofluorescence studies showed that α-taxilin distributes throughout the cytoplasm and exhibits a tubulo-vesicular pattern. Biochemical studies showed that α-taxilin is abundantly localized on intracellular components as a peripheral membrane protein. Moreover, we found that α-taxilin distributes in microtubule-dependent and syntaxin-independent manners, that α-taxilin directly binds to polymerized tubulin in vitro, and that N-ethylmaleimide but not brefeldin A affects the intracellular distribution of α-taxilin. These results indicate that α-taxilin is localized on intracellular components in a syntaxin-independent manner and that the α-taxilin-containing intracellular components are associated with the microtubule cytoskeleton and suggest that α-taxilin functions as a linker protein between the α-taxilin-containing intracellular components and the microtubule cytoskeleton.  相似文献   
94.
Five human 2,3-oxidosqualnene cyclase (OSC) inhibitors were discovered using the combination of a virtual screening based on a docking study and an isotope-free assay system. All of these inhibitors were revealed to have activities comparable or superior to that of LDAO, a known OSC inhibitor. The computational study of the newly identified inhibitors suggested that CH/π interactions with F444 and W581 contribute to the binding, and these interactions are candidates for additional structural filters in the next generation of virtual screening.  相似文献   
95.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   
96.
Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/-) (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.  相似文献   
97.
98.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   
99.
Chemokine-mediated T cell migration is essential to an optimal immune response. The p110gamma isoform of PI3K is activated by G protein-coupled receptors and regulates neutrophil and macrophage chemotaxis. We used p110gamma-deficient mice to examine the role of p110gamma in CD8 T cell migration and activation in response to viral challenge. Naive CD8 T cell migration in response to CCL21 in vitro and trafficking into secondary lymphoid organs in vivo was unaffected by the loss of p110gamma. Furthermore, loss of p110gamma did not affect CD8 T cell proliferation and effector cell differentiation in vitro in response to anti-CD3 stimulation or in vivo in response to vaccinia virus (VV) challenge. However, there was reduced migration of p110gamma knockout (p110gamma(-/-)) CD8 effector T cells into the peritoneum following i.p. challenge with VV. The role of p110gamma in CD8 effector T cell migration was intrinsic to T cells, as p110gamma(-/-) CD8 effector T cells exhibited impaired migration into the inflamed peritoneum following secondary transfer into wild-type recipients. In addition, p110gamma(-/-) CD8 effector T cells exhibited impaired migration in vitro in response to inflammatory chemoattractants. Although wild-type mice efficiently cleared VV at high viral doses, infection of p110gamma knockout mice resulted in visible illness and death less than a week after infection. Thus, p110gamma is dispensable for constitutive migration of naive CD8 T cells and subsequent activation and differentiation into effector CD8 T cells, but plays a central role in the migration of effector CD8 T cells into inflammatory sites.  相似文献   
100.
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix proteins, is one of the causes of heart failure, and it contributes to the impairment of cardiac function. Fibrosis of various tissues, including the heart, is believed to be regulated by the signalling pathway of angiotensin II (Ang II) and transforming growth factor (TGF)‐β. Transgenic expression of inhibitory polypeptides of the heterotrimeric G12 family G protein (Gα12/13) in cardiomyocytes suppressed pressure overload‐induced fibrosis without affecting hypertrophy. The expression of fibrogenic genes (TGF‐β, connective tissue growth factor, and periostin) and Ang‐converting enzyme (ACE) was suppressed by the functional inhibition of Gα12/13. The expression of these fibrogenic genes through Gα12/13 by mechanical stretch was initiated by ATP and UDP released from cardiac myocytes through pannexin hemichannels. Inhibition of G‐protein‐coupled P2Y6 receptors suppressed the expression of ACE, fibrogenic genes, and cardiac fibrosis. These results indicate that activation of Gα12/13 in cardiomyocytes by the extracellular nucleotides‐stimulated P2Y6 receptor triggers fibrosis in pressure overload‐induced cardiac fibrosis, which works as an upstream mediator of the signalling pathway between Ang II and TGF‐β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号