首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   27篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2016年   9篇
  2015年   24篇
  2014年   20篇
  2013年   40篇
  2012年   34篇
  2011年   30篇
  2010年   23篇
  2009年   17篇
  2008年   29篇
  2007年   38篇
  2006年   23篇
  2005年   39篇
  2004年   38篇
  2003年   32篇
  2002年   41篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   12篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1975年   5篇
  1974年   2篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有602条查询结果,搜索用时 218 毫秒
51.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   
52.
The R3 subtype of receptor-type protein tyrosine phosphatases (RPTPs) includes VE-PTP, DEP-1, PTPRO, and SAP-1. All of these enzymes share a similar structure, with a single catalytic domain and putative tyrosine phosphorylation sites in the cytoplasmic region and fibronectin type III–like domains in the extracellular region. The expression of each R3 RPTP is largely restricted to a single or limited number of cell types, with VE-PTP and DEP-1 being expressed in endothelial or hematopoietic cells, PTPRO in neurons and in podocytes of the renal glomerulus, and SAP-1 in gastrointestinal epithelial cells. In addition, these RPTPs are localized specifically at the apical surface of polarized cells. The structure, expression, and localization of the R3 RPTPs suggest that they perform tissue-specific functions and that they might act through a common mechanism that includes activation of Src family kinases. In this review, we describe recent insights into R3-subtype RPTPs, particularly those of mammals.  相似文献   
53.
The hemopoietic specific adapter protein ADAP (adhesion and degranulation-promoting adapter protein) positively regulates TCR-dependent, integrin-mediated adhesion and participates in signaling pathways downstream of the TCR that result in T cell activation. The specific role of ADAP in regulating Ag-dependent T cell interactions with APCs and T cell activation following Ag stimulation is not known. We used ADAP-/- DO11.10 T cells to demonstrate that ADAP promotes T cell conjugation to Ag-laden APCs. Complementary in vitro and in vivo approaches reveal that ADAP controls optimal T cell proliferation, cytokine production, and expression of the prosurvival protein Bcl-xL in response to limiting Ag doses. Furthermore, ADAP is critical for clonal expansion in vivo independent of Ag concentration under conditions of low clonal abundance. These results suggest that ADAP regulates T cell activation by promoting Ag-dependent T cell-APC interactions, resulting in enhanced T cell sensitivity to Ag, and by participating in prosurvival signaling pathways initiated by Ag stimulation.  相似文献   
54.
Chymase is an important enzyme for the generation of angiotensin (Ang) II and in the activation of transforming growth factor (TGF)-beta1. Therefore, chymase may be involved in the hemodialysis access dysfunction, which is caused by intimal hyperplasia that occurs after polytetrafluoroethylene (PTFE) graft implantations. Bilateral U-shaped PTFE grafts were placed between the femoral vein and artery in dogs. Chymase inhibitor (NK3201, 1 mg/kg per day, p.o.) treatments were initiated 3 days before the operation. After the implantation, the stenosis by neointima proliferation was most frequently observed in the venous side of the PTFE grafts. In the hyperplastic neointima, myofibroblasts were the main cellular components. On the other hand, fibroblasts only occupied cellular components in a much smaller proportion in the neointima. However, these cells seem to be rich in the properties of proliferation and migration. After PTFE graft implantations, extensive accumulations of chymase-positive mast cells were found mainly in the tissue surrounding the grafts. The Ang II- and TGF-beta-positive cells were found in an adjacent section that was in close proximity to the chymase-positive cells. In contrast, the AT(1) receptors, as well as TGF-beta type II receptors, were expressed either in the neointima or in the outside adventitia of the PTFE grafts. Chymase inhibitor treatment resulted in a reduction of chymase, Ang II and TGF-beta1 expression, leading to a significant inhibition of neointimal formation. These findings indicating that an increase of chymase via promoting Ang II and TGF-beta1 generation plays a pivotal role in the neointimal formation after the implantation of PTFE grafts and also suggesting that chymase inhibition may be a new strategy that can be used to prevent PTFE graft dysfunctions in clinical settings.  相似文献   
55.
56.
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP florescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.  相似文献   
57.
It is assumed that CD8(+) cytotoxic T lymphocytes (CTLs) mediate direct lysis of allografts and that their growth, differentiation, and activation are dependent upon cytokine production by CD4(+) helper T lymphocytes. In the present study, the effector cells responsible for the rejection of i.p. allografted, CTL-resistant Meth A tumor cells from C57BL/6 mice were characterized. The cytotoxic activity was associated exclusively with peritoneal exudate cells and not with the cells in lymphoid organs or blood. On day 8, when the cytotoxic activity reached a peak, 3 types of cells (i.e., lymphocytes, granulocytes, and macrophages) infiltrated into the rejection site; and allograft-induced macrophages (AIM) were cytotoxic against the allograft. Bacterially-elicited macrophages also exhibited cytotoxic activity (approximately 1/2 of that of AIM) against Meth A cells, whereas the cytotoxic activity of AIM against these cells but not that of bacterially-elicited macrophages was completely inhibited by the addition of donor (H-2(d))-type lymphoblasts, suggesting H-2(d)-specific cytotoxicity of AIM against Meth A cells. In contrast, resident macrophages were inactive toward Meth A cells. Morphologically, the three-dimensional appearance of AIM showed them to be unique large elongated cells having radiating peripheral filopodia and long cord-like extensions arising from their cytoplasmic surfaces. The ultrastructural examination of AIM revealed free ribosomes in their cytoplasm, which was often deformed by numerous large digestive vacuoles. These results indicate that AIM are the H-2(d)-specific effector cells for allografted Meth A cells and are a more fully activated macrophage with unique morphological features.  相似文献   
58.
We evaluated the microbial communities in acetate-rich production waters from separators of a high-temperature gas-petroleum reservoir in Higashi-Niigata, Japan. Bacterial and archaeal 16S rRNA gene libraries constructed from these waters were dominated by Acetobacterium-, Methanofollis-, and Methanosarcina-related sequences. The libraries constructed from enrichment cultures of the production waters were dominated by sequences related to the Acetobacterium- and Methanofollis-related sequences.  相似文献   
59.
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 μM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.  相似文献   
60.
In obese adipose tissue, infiltrating macrophages release proinflammatory cytokines that trigger insulin resistance. An adipocyte-based platform from visceral fat would be useful to elucidate the pathology of adipose inflammation and to develop therapeutic drugs for insulin resistance. ADSCs (adipose tissue-derived mesenchymal stromal cells) expanded from subcutaneous fat are intensively studied as sources for regenerative medicine. However, the adipocyte culture system from visceral fat tissue has not been utilized yet. We aimed to establish the bioactive adipocyte platform using ADSCs from visceral fat pad. Stromal vascular fractions were processed from epididymal fat pads of Sprague-Dawley rats and three human omental fat pads, and the ADSCs were expanded using a low-serum culture method. The responses of ADSCs and ADSC-adipocytes (their adipogenic lineages) to pioglitazone, a therapeutic drug for diabesity, were evaluated by gene expression and ELISA. ADSCs (1×108) were expanded from 10 g of rat epididymal fat pads or human omental fat pads over five passages. Cell surface marker expressions revealed that visceral ADSCs were equivalent to mesenchymal stem cells. ADSC-adipocytes expanded in the low-serum culture system significantly showed higher expression of adipogenic markers [PPAR (peroxisome proliferator-activated receptor) γ, LPL (lipoprotein lipase) and FABP4 (fatty acid-binding protein 4)] and adipocytokines [adiponectin, resistin, leptin, PAI-1 (plasminogen-activator inhibitor 1) and IL (interleukin)-10] than those expanded in a high-serum culture system. Pioglitazone accelerated the adipogenic induction and increased adiponectin expression in human ADSCs by 57.9±5.8-fold (mean±S.E.M.) relative to control cells (P<0.001). Both in rat and human ADSC-adipocytes, TNF-α significantly induced proinflammatory cytokines [MCP-1 (monocyte chemoattractant protein-1) and IL-6] and suppressed adiponectin expression, while pioglitazone antagonized these effects. The present findings suggest that visceral ADSC-adipocytes expanded in low-serum culture would be useful for adiposcience and pharmacological evaluations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号