首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2530篇
  免费   167篇
  2021年   24篇
  2019年   28篇
  2018年   23篇
  2017年   27篇
  2016年   34篇
  2015年   55篇
  2014年   73篇
  2013年   197篇
  2012年   109篇
  2011年   122篇
  2010年   55篇
  2009年   71篇
  2008年   113篇
  2007年   123篇
  2006年   125篇
  2005年   109篇
  2004年   109篇
  2003年   103篇
  2002年   97篇
  2001年   74篇
  2000年   75篇
  1999年   79篇
  1998年   24篇
  1997年   21篇
  1996年   16篇
  1995年   14篇
  1994年   24篇
  1993年   18篇
  1992年   55篇
  1991年   67篇
  1990年   39篇
  1989年   40篇
  1988年   55篇
  1987年   33篇
  1986年   44篇
  1985年   40篇
  1984年   22篇
  1983年   33篇
  1982年   18篇
  1981年   23篇
  1980年   20篇
  1979年   31篇
  1978年   16篇
  1977年   21篇
  1975年   15篇
  1974年   24篇
  1973年   22篇
  1972年   16篇
  1971年   15篇
  1968年   15篇
排序方式: 共有2697条查询结果,搜索用时 765 毫秒
41.
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was dependent on the external concentrations of dopamine and ascorbate. The apparent Km of the dopamine beta-hydroxylation system for external dopamine was approximately 20 microM in the presence or absence of ascorbic acid. However, the apparent maximum velocity of norepinephrine formation was nearly doubled in the presence of ascorbic acid. By contrast, the apparent Km and Vmax of dopamine uptake into chromaffin granules were not affected by ascorbic acid. Norepinephrine formation was increased by ascorbic acid when the concentration of ascorbate was 200 microM or higher; a concentration of 2 mM appeared to induce the maximal effect under the experimental conditions used here. The effect of ascorbic acid on conversion of dopamine to norepinephrine required Mg-ATP-dependent dopamine uptake into chromaffin granules. In contrast to ascorbic acid, other reducing agents such as NADH, glutathione, and homocysteine were unable to enhance norepinephrine biosynthesis. These data suggest that ascorbic acid provides reducing equivalents for hydroxylation of dopamine despite the lack of ascorbate accumulation into chromaffin granules. These findings imply the functional existence of an electron carrier system in the chromaffin granule which transfers electrons from external ascorbic acid for subsequent intragranular norepinephrine biosynthesis.  相似文献   
42.
The steady-state kinetic parameters of human alpha-thrombin and the alpha-thrombin-staphylocoagulase complex as to the chromogenic substrate, H-D-Phe-Pip-Arg-p-nitroanilide (S-2238), were determined. At pH 8.0 and 37 degrees C, the Km values for alpha-thrombin and the complex for S-2238 were 7.9 microM and 7.7 microM, respectively. The kcat of this amidase reaction catalyzed by the complex was 127 s-1, which had apparently decreased from the kcat of 197 s-1 determined for free alpha-thrombin. This difference in the kinetic parameter between alpha-thrombin and the complex was also observed using the fluorogenic substrate, Boc-Val-Pro-Arg-4-methylcoumaryl-7-amide. Moreover, the fibrinogen clotting activity of the alpha-thrombin-staphylocoagulase complex was less than half that of alpha-thrombin, suggesting that the alpha-thrombin active site in the complex is different in catalytic ability from that of free alpha-thrombin. Other evidence supporting this view was as follows: The alpha-thrombin-staphylocoagulase complex is insensitive to antithrombin III, the complex shows much weaker binding to hirudin, as compared to free alpha-thrombin, and the amidase pH-profiles of the complex and free alpha-thrombin differ from each other. These results indicate that the microenvironment of the active site of alpha-thrombin is significantly altered by the complex formation with staphylocoagulase.  相似文献   
43.
The alkali light chain of rabbit skeletal muscle myosin, A1, was cyanylated with 2-nitro-5-thiocyanobenzoic acid, and the peptide bond at Cys 177 was subsequently cleaved in the presence of 0.05 M CaCl2. Two peptide fragments, from the N-terminal to the residue 176 (CF1) and from the residue 177 to the C-terminal (CF2), were obtained. The CD spectrum and the difference UV absorption spectrum induced by CaCl2 suggested that CF1 largely retained the higher order structure of A1. The CF1 fragment, however, could neither incorporate subfragment-1 (S-1) by an exchange reaction, nor bind with the renatured 20K fragment of S-1 heavy chain. On the other hand, the C-terminal fragment of 14 residues, CF2, could bind with the 20K fragment of S-1 heavy chain. These results indicate that the binding site of the alkali light chain for the heavy chain of myosin is located within the C-terminal 14 residues.  相似文献   
44.
Staphylocoagulase-binding region in human prothrombin   总被引:4,自引:0,他引:4  
A staphylocoagulase-binding region in human prothrombin was studied by utilizing several fragments prepared from prothrombin by limited proteolysis. Bovine prothrombin, prethrombin 1, prethrombin 2, and human diisopropylphosphorylated alpha-thrombin strongly inhibited formation of the complex ("staphylothrombin") between human prothrombin and staphylocoagulase, but bovine prothrombin fragment 1 and fragment 2 had no effect on the complex formation, indicating that the binding region of human prothrombin for staphylocoagulase is located in the prethrombin 2 molecule. To identify further the staphylocoagulase-binding region, human alpha-thrombin was cleaved into the NH2-terminal large fragment (Mr = 26,000) and the COOH-terminal fragment (Mr = 16,000) by porcine pancreatic elastase. Of these fragments, the COOH-terminal fragment, which includes Asn-200 to the COOH-terminal end of the alpha-thrombin molecule, partially inhibited the complex formation between staphylocoagulase and human prothrombin. In contrast, the NH2-terminal large fragment did not show any inhibitory effect on the staphylothrombin formation. These results suggest that the staphylocoagulase interacts with human prothrombin through the COOH-terminal region of alpha-thrombin B chain. Other plasma proteins, factor X, factor IX, protein C, protein S, protein Z, all of which are structurally similar to prothrombin, did not inhibit the staphylothrombin formation at all, indicating that a specific interaction site with staphylocoagulase is contained only in the prothrombin molecule.  相似文献   
45.
Smooth muscle myosin from scallop (Patinopecten yessoensis) adductor muscle contains two kinds of regulatory light chains (regulatory light chains a and b), and myosin having regulatory light chain a is suggested to be suitable for inducing "catch contraction" rather than myosin having regulatory light chain b (Kondo, S. & Morita, F. (1981) J. Biochem. 90, 673-681). The amino acid sequences of these two light chains were determined and compared. Regulatory light chain a consists of 161 amino acid residues, while regulatory light chain b consist of 156 amino acid residues. Amino acid substitutions and insertions were found only in the N-terminal regions of the sequences. The structural difference between the two light chains may contribute to the functional difference between myosins having regulatory light chains a and b.  相似文献   
46.
Vaccinia viruses LC16m0 and LC16m8 are temperature-sensitive and low-neurovirulent variants derived from the Lister (Elstree) (LO) strain. Analyses of genome DNAs by digestion with restriction endonucleases and cross-hybridization of the digested fragments revealed that LC16m0 and LC16m8 possess a new XhoI site in addition to the 14 XhoI sites of LO. This new site is located at about 12 X 10(6) daltons from the right terminal end. There was no significant difference in the genome structures between the LC16 variants and LO except the new XhoI site and their terminal fragments which were not identified in LO owing to their heterogeneity. With HindIII digested fragments, there was no difference among the three viruses. This complete mapping raised the possibility that the putative gene responsible for temperature sensitivity and neurovirulence is located at the region of the XhoI site found in LC16m0 and LC16m8.  相似文献   
47.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   
48.
A hemocyte lysate from horseshoe crab produced a gel, when exposed to Gram-negative bacterial endotoxins. This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1 3)--d-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, factor G and anti-LPS factor, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. Among these components, the complete amino acid sequences of coagulogens isolated from one American and three Asian species of horseshoe crabs have been established. Moreover, the reconstitution experiment using the isolated clotting factors, C, B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin get. Based on these results, we propose here a mechanism for the Limulus coagulation cascade.  相似文献   
49.
A comparative study of the larval and adult pineal organs, which are sensitive to incident light, was carried out in the river lamprey Lampetra japonica, using intracellular recording from the pineal photoreceptors. The tissue overlying the larval pineal organ is transparent, whereas that over the adult pineal is translucent. The optical density of this oval pineal window in the adult lamprey was 1.2. In order to elucidate the early development of the larval pineal, the ratio r of the diameter (micron) of the pineal to the body-length (cm) was measured. The value of r was 62.5 in a small larva of 2.8 cm, 29.7 in a larger one of 14.3 cm, and 9.3 in an adult of 54 cm body-length. The intracellular response to light of the larval pineal was a hyperpolarization, showing fundamentally the same pattern as that of the adult pineal. It was possible to record a typical response even from the pineal of the smallest larva, 2.8 cm in body length, used in this study. The intensity-amplitude relationship was analysed after Naka-Rushton's hyperbolic equation. The value of sigma of isolated larval pineals was 0.88 log unit higher than that of adults. The value of n was larger in larvae, suggesting a sensitive reaction to changing photic stimulus. The spectral sensitivity was compared. The peak was at 505 nm in the larva, but 525 nm in the adult. A change of visual pigment in the pineal during metamorphosis is suggested.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号