首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   13篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   13篇
  2013年   13篇
  2012年   18篇
  2011年   11篇
  2010年   10篇
  2009年   7篇
  2008年   16篇
  2007年   11篇
  2006年   13篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有171条查询结果,搜索用时 140 毫秒
11.
Many pathogens utilize the formation of transmembrane pores in target cells in the process of infection. A great number of pore-forming proteins, both bacterial and viral, are considered to be important virulence factors, which makes them attractive targets for the discovery of new therapeutic agents. Our research is based on the idea that compounds designed to block the pores can inhibit the action of virulence factors, and that the chances to find high affinity blocking agents increase if they have the same symmetry as the target pore. Recently, we demonstrated that derivatives of beta-cyclodextrin inhibited anthrax lethal toxin (LeTx) action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. To test the broader applicability of this approach, we sought beta-cyclodextrin derivatives capable of inhibiting the activity of Staphylococcus aureus alpha-hemolysin (alpha-HL), which is regarded as a major virulence factor playing an important role in staphylococcal infection. We identified several amino acid derivatives of beta-cyclodextrin that inhibited the activity of alpha-HL and LeTx in cell-based assays at low micromolar concentrations. One of the compounds was tested for the ability to block ion conductance through the pores formed by alpha-HL and PA in artificial lipid membranes. We anticipate that this approach can serve as the basis for a structure-directed drug discovery program to find new and effective therapeutics against various pathogens that utilize pore-forming proteins as virulence factors.  相似文献   
12.
The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and/or HIV chronicity silence expression of multiple proteins that in healthy subjects function to provide robust innate immune responses and combat cellular stress.  相似文献   
13.
Hagos Y  Braun IM  Krick W  Burckhardt G  Bahn A 《Biochimie》2005,87(5):421-424
With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.  相似文献   
14.
Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.  相似文献   
15.
Immunological tolerance during prolonged exposure to allergen is accompanied by a shift in the lymphocyte content and a reduction of goblet cell metaplasia (GCM). Bim initiates negative selection of autoreactive T and B cells and shut down of T cell immune responses in vivo. The present study investigated whether Bim plays a role in the resolution of GCM during prolonged exposure to allergen. Loss of Bim increased T lymphocyte numbers in the bronchoalveolar lavage at 4 and 15 days of allergen exposure. The numbers of pulmonary CD4(+)8(-), CD4(-)8(+), and gammadelta T cells were significantly higher in naive and allergen-challenged bim(-/-) mice compared with wild-type (WT) littermates. When activated, pulmonary bim(-/-) T cells produced increased levels of IFNgamma compared with bim(+/+) T cells. No differences were noted in the total numbers of epithelial cells per millimeter of basal lamina between bim(+/+) and bim(-/-) mice, and the rate of resolution over 15 days of exposure was similar in both groups of mice. However, GCM was significantly enhanced and expression of IL-13Ralpha2 was reduced in bim(-/-) mice compared with WT mice at 4 days. Furthermore, treatment of bronchiolar explant cultures with increasing IFNgamma levels reduced immunostaining for IL-13Ralpha2. Collectively, these studies suggest that, during prolonged exposure to allergen, Bim plays no role in the resolution of GCM, but increased IFNgamma levels in bim(-/-) mice may be responsible for reduced expression of IL-13Ralpha2 and enhanced GCM despite similar levels of IL-13 in bim(+/+) and bim(-/-) mice.  相似文献   
16.

Background  

InEscherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated.  相似文献   
17.
Nitric oxide (NO) is a potent signaling molecule that needs to be tightly regulated to maintain metabolic and cardiovascular homeostasis. The nitric oxide synthase (NOS)/dimethylarginine dimethylaminohydrolase (DDAH)/asymmetric dimethylarginine (ADMA) pathway is central to this regulation. Specifically, the small-molecule ADMA competitively inhibits NOS, thus lowering NO levels. The majority of ADMA is physiologically metabolized by DDAH, thus maintaining NO levels at a physiological concentration. However, under pathophysiological conditions, DDAH activity is impaired, in part as a result of its sensitivity to oxidative stress. Therefore, the application of high-throughput chemical screening for the discovery of small molecules that could restore or enhance DDAH activity might have significant potential in treating metabolic and vascular diseases characterized by reduced NO levels, including atherosclerosis, hypertension, and insulin resistance. By contrast, excessive generation of NO (primarily driven by inducible NOS) could play a role in idiopathic pulmonary fibrosis, sepsis, migraine headaches, and some types of cancer. In these conditions, small molecules that inhibit DDAH activity might be therapeutically useful. Here, we describe optimization and validation of a highly reproducible and robust assay successfully used in a high-throughput screen for DDAH modulators.  相似文献   
18.

Background

Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation.

Methodology

We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree 13CO2 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated 13C with soil CO2 efflux.

Principal Findings

13C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one.

Conclusions

Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.  相似文献   
19.
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.  相似文献   
20.
Nutrition of the world's population in the 21st century often appears as an unsolved problem. The challenges are bigger than an increase in agricultural production. From a brief review on the history of food production diverse aspects of the development become evident: innovations with their beneficial and non‐beneficial aspects, e.g. the, green revolution' increasing the rice yields on one hand and the number of landless people on the other. Great differences can be found in agricultural productivity: the yields of the presently area under the plough can be increased. Climate change impacts on the framework of agricultural production with losses and gains of arable land. The challenges of global nutrition cannot be met by innovations in plant breeding and cultivation alone. Socioeconomic factors, education, and health become increasingly important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号