首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61422篇
  免费   5098篇
  国内免费   5633篇
  2024年   97篇
  2023年   731篇
  2022年   1132篇
  2021年   2905篇
  2020年   2056篇
  2019年   2611篇
  2018年   2637篇
  2017年   2126篇
  2016年   2744篇
  2015年   3471篇
  2014年   4301篇
  2013年   4622篇
  2012年   5400篇
  2011年   4998篇
  2010年   3534篇
  2009年   3136篇
  2008年   3586篇
  2007年   3195篇
  2006年   2812篇
  2005年   2306篇
  2004年   2113篇
  2003年   1979篇
  2002年   1636篇
  2001年   1207篇
  2000年   1017篇
  1999年   771篇
  1998年   518篇
  1997年   403篇
  1996年   386篇
  1995年   374篇
  1994年   362篇
  1993年   264篇
  1992年   332篇
  1991年   284篇
  1990年   228篇
  1989年   208篇
  1988年   137篇
  1987年   199篇
  1986年   155篇
  1985年   138篇
  1984年   109篇
  1983年   104篇
  1982年   88篇
  1981年   85篇
  1980年   53篇
  1979年   67篇
  1978年   67篇
  1976年   53篇
  1973年   66篇
  1972年   56篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
961.
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.  相似文献   
962.
Formononetin is a natural isoflavone compound found mainly in Chinese herbal medicines such as astragalus and red clover. It is considered to be a typical phytooestrogen. In our previous experiments, it was found that formononetin has a two‐way regulatory effect on endothelial cells (ECs): low concentrations promote the proliferation of ECs and high concentrations have an inhibitory effect. To find a specific mechanism of action and provide a better clinical effect, we performed a structural transformation of formononetin and selected better medicinal properties for formononetin modifier J1 and J2 from a variety of modified constructs. The MTT assay measured the effects of drugs on human umbilical vein endothelial cell (HUVEC) activity. Scratch and transwell experiments validated the effects of the drugs on HUVEC migration and invasion. An in vivo assessment effect of the drugs on ovariectomized rats. Long‐chain non‐coding RNA for EWSAT1, which is abnormally highly expressed in HUVEC, was screened by gene chip, and the effect of the drug on its expression was detected by PCR after the drug was applied. The downstream factors and their pathways were analysed, and the changes in the protein levels after drug treatment were evaluated by Western blot. In conclusion, the mechanism of action of formononetin, J1 and J2 on ECs may be through EWSAT1‐TRAF6 and its downstream pathways.  相似文献   
963.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   
964.
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.  相似文献   
965.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
966.
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive‐aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long‐term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side‐effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria‐dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial‐mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.  相似文献   
967.
Characteristic pathological changes in osteonecrosis of the femoral head (ONFH) include reduced osteogenic differentiation of bone mesenchymal stem cells (BMSCs), impaired osseous circulation and increased intramedullary adipocytes deposition. Osthole is a bioactive derivative from coumarin with a wide range of pharmacotherapeutic effects. The aim of this study was to unveil the potential protective role of osthole in alcohol‐induced ONFH. In vitro, ethanol (50 mmol/L) remarkably decreased the proliferation and osteogenic differentiation of BMSCs and impaired the proliferation and tube formation capacity of human umbilical vein endothelial cell (HUVECs), whereas it substantially promoted the adipogenic differentiation of BMSCs. However, osthole could reverse the effects of ethanol on osteogenesis via modulating Wnt/β‐catenin pathway, stimulate vasculogenesis and counteract adipogenesis. In vivo, the protective role of osthole was confirmed in the well‐constructed rat model of ethanol‐induced ONFH, demonstrated by a cascade of radiographical and pathological investigations including micro‐CT scanning, haematoxylin‐eosin staining, TdT‐mediated dUTP nick end labelling, immunohistochemical staining and fluorochrome labelling. Taken together, for the first time, osthole was demonstrated to rescue the ethanol‐induced ONFH via promoting bone formation, driving vascularization and retarding adipogenesis.  相似文献   
968.
Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell‐free DNA and NET marker levels. Live‐cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell‐free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS‐IgG) induced neutrophils from HCs to release NETs. Additionally, APS‐IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS‐IgG‐induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.  相似文献   
969.
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC.  相似文献   
970.
Abnormal mitochondrial fission and mitophagy participate in the pathogenesis of many cardiovascular diseases. Baicalein is a key active component in the roots of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. It has been reported that baicalein can resist cardiotoxicity induced by several stress, but the mechanisms of baicalein operate in the protection of cardiomyocytes need to be researched further. Here we report that baicalein can promote cell survival under oxidative stress by up‐regulating the expression level of MARCH5 in cardiomyocytes. Pre‐treatment cells or mice with baicalein can stabilize the expression of MARCH5, which plays a crucial role in the regulation of mitochondrial network and mitophagy. Overexpressed MARCH5 is able to against H2O2 and ischaemia/reperfusion (I/R) stress by suppressing mitochondrial fission and enhancing mitophagy, and then attenuate cells apoptosis. Altogether, our present study investigated that baicalein exerts a protective effect through regulating KLF4‐MARCH5‐Drp1 pathway, our research also provided a novel theoretical basis for the clinical application of baicalein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号