首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   107篇
  国内免费   3篇
  2023年   7篇
  2022年   4篇
  2021年   17篇
  2020年   15篇
  2019年   13篇
  2018年   23篇
  2017年   16篇
  2016年   41篇
  2015年   58篇
  2014年   61篇
  2013年   82篇
  2012年   87篇
  2011年   96篇
  2010年   51篇
  2009年   42篇
  2008年   57篇
  2007年   42篇
  2006年   42篇
  2005年   44篇
  2004年   49篇
  2003年   39篇
  2002年   40篇
  2001年   29篇
  2000年   20篇
  1999年   24篇
  1998年   10篇
  1997年   7篇
  1996年   13篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   19篇
  1991年   12篇
  1990年   6篇
  1989年   5篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1985年   11篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1973年   9篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1208条查询结果,搜索用时 26 毫秒
61.
62.
63.
Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.  相似文献   
64.
G protein-coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT(4b) receptor, a GPCR with high constitutive G(s) signaling and strong ligand-induced G-protein activation of the G(s) and G(s/q) pathways. The first receptor in this series, 5-HT(4)-D(100)A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced G(s) signaling, but only a few (e.g., zacopride) also induced signaling via the G(q) pathway. Zacopride-induced G(q) signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT(2C) receptor. Additional point mutations (D(66)A and D(66)N) blocked constitutive G(s) signaling and lowered ligand-induced G(q) signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT(1A) conferred ligand-mediated G(i) signaling. This G(i)-coupled RASSL, Rs1.3, exhibited no measurable signaling to the G(s) or G(q) pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection.  相似文献   
65.
Ku Y  Ohara S  Wang L  Lenz FA  Hsiao SS  Bodner M  Hong B  Zhou YD 《PloS one》2007,2(8):e771
Our previous studies on scalp-recorded event-related potentials (ERPs) showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA) to the ERP data, we found independent components (ICs) located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC) and the primary somatosensory cortex (SI). The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex) that are involved in sensation and perception of various stimuli.  相似文献   
66.
67.
Purified natural cholecystokinin (CCK-33) was infused continuously for two days at a rate of 5.9 μg/hr in two rats trained to bar-press for food (Noyes pellet 45 mg) on a fixed ratio of five bar presses to obtain one pellet. The animals also received control surgery and were tested in the operant chamber for two days, one prior to and the other following the CCK-33 treatment. CCK-33 suppressed the number of meals, the total amount of food eaten, and the total duration of time spent eating. However, the size of each meal and the rate of intake were not affected. The CCK effect did not interact with the light-dark phases of diurnal cycle. It appears that a major effect of continuous systemic elevation of CCK-33 is to reduce food intake by prolonging the satiety period rather than by decreasing the individual meal size.  相似文献   
68.
The antioxidant properties of cinnamophilin were evaluated by studying its ability to react with relevant reactive oxygen species, and its protective effect on cultured cells and biomacromolecules under oxidative stress. Cinnamophilin concentration-dependently suppressed non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 8.0+/-0.7 microM and iron ion/ADP/ascorbate-initiated rat liver mitochondrial lipid peroxidation with an IC50 value of 17.7+/-0.2 microM. It also exerted an inhibitory activity on NADPH-dependent microsomal lipid peroxidation with an IC50 value of 3.4+/-0.1 microM without affecting microsomal electron transport of NADPH-cytochrome P-450 reductase. Both 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azo-bis(2-amidinopropane) dihydrochloride-derived peroxyl radical tests demonstrated that cinnamophilin possessed marked free radical scavenging capacity. Cinnamophilin significantly protected cultured rat aortic smooth muscle cells (A7r5) against alloxan/iron ion/H2O2-induced damage resulting in cytoplasmic membranous disturbance and mitochondrial potential decay. By the way, cinnamophilin inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity and thiobarbituric acid-reactive substance formation in a concentration-dependent manner. On the other hand, it was reactive toward superoxide anions generated by the xanthine/xanthine oxidase system and the aortic segment from aged spontaneously hypertensive rat. Furthermore, cinnamophilin exerted a divergent effect on the respiratory burst of human neutrophil by different stimulators. Our results show that cinnamophilin acts as a novel antioxidant and cytoprotectant against oxidative damage.  相似文献   
69.
We have addressed the role of occipital and somatosensory cortex in a tactile discrimination task. Sight-ed and congenitally blind subjects rated the roughness and distance spacing for a series of raised dot patterns. When judging roughness, intermediate dot spacings were perceived as being the most rough, while distance judgments generated a linear relation. Low-frequency rTMS applied to somatosensory cortex disrupted roughness without affecting distance judgments, while rTMS to occipital cortex disrupted distance but not roughness judgments. We also tested an early blind patient with bilateral occipital cortex damage. Her performance on the roughness determination task was normal; however, she was greatly impaired with distance judgments. The findings suggest a double-dissociation effect in which roughness and distance are primarily processed in somatosensory and occipital cortex, respectively. The differential effect of rTMS on task performance and corroborative clinical evidence suggest that occipital cortex is engaged in tactile tasks requiring fine spatial discrimination.  相似文献   
70.
Bradykinin (BK) is released into the tear-film in ocular allergic patients. BK has been shown to exert mitogenic effects on several cell types. However, the mechanisms underlying its action on corneal keratocytes (CKs) were largely unknown. This study was to investigate the mitogenic effect of BK on rabbit CKs linked to activation of p42/p44 mitogen-activated protein kinase (MAPK), assessed by [3H]thymidine incorporation and Western blotting analysis, respectively. BK stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner. Pretreatment with pertussis toxin attenuated the BK-induced responses. BK-stimulated responses were attenuated by inhibitors of selective B2 receptor (Hoe 140), phosphatidylinositol (PI)-PLC (U73122), an intracellular Ca2+chelator (BAPTA/AM), PKC (GF109203X), tyrosine kinase (genistein), and MEK1/2 (PD98059). BK also stimulated translocation of p42/p44 MAPK into nucleus and led to expression of c-fos and c-jun in CKs. These results demonstrate that in CKs, BK-stimulated phosphorylation of p42/p44 MAPK is mediated through the activation of BK B2 receptors and leads to cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号