首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2027篇
  免费   123篇
  国内免费   94篇
  2023年   21篇
  2022年   17篇
  2021年   91篇
  2020年   52篇
  2019年   57篇
  2018年   56篇
  2017年   52篇
  2016年   70篇
  2015年   141篇
  2014年   105篇
  2013年   144篇
  2012年   190篇
  2011年   172篇
  2010年   100篇
  2009年   68篇
  2008年   122篇
  2007年   97篇
  2006年   82篇
  2005年   76篇
  2004年   57篇
  2003年   65篇
  2002年   43篇
  2001年   57篇
  2000年   38篇
  1999年   51篇
  1998年   16篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1967年   2篇
  1966年   2篇
  1956年   2篇
排序方式: 共有2244条查询结果,搜索用时 43 毫秒
61.
Human umbilical cord mesenchymal stem cells (hUCMSCs) are considered to be an ideal replacement for bone marrow MSCs. However, up to date, there is no convenient and efficient method for hUCMSC isolation and culture. The present study was carried out to explore the modified enzyme digestion for hUCMSC in vitro. Conventional enzyme digestion, modified enzyme digestion, and tissue explant were used on hUCMSCs to compare their efficiencies of isolation and culture, to observe primary cell growth and cell subculture. The results show that the cells cultured using the tissue explant method had a longer culture cycle (P < 0.01) and lower yield of primary cells per centimetre of umbilical cord (P < 0.01) compared with the two enzyme digestion methods. Subculture adherence and cell doubling took significantly less time with the tissue explant method (P < 0.05) than with the conventional enzyme digestion method; however, there was no significant difference between the tissue explant method and the modified enzyme digestion method (P > 0.05). Comparing two enzyme digestion methods, the modified method yielded more cells than did the conventional method (P < 0.01), and primary cell adherence took significantly less time with the modified method than with the conventional method (P < 0.05). Cell cycle analysis of the third-generation hUCMSCs cultured by modified enzyme digestion method indicated that most cells were quiescent. Immunofluorescence staining showed that these cells expressed MSC markers CD44 and CD90. And Von Kossa and oil red O staining detection showed that they could be differentiated into osteoblasts and adipocytes with induction medium in vitro. This study suggests that hUCMSC isolation and culture using 0.2 % collagenase II at 37 °C for digestion of 16–20 h is an effective and simple modified enzyme digestion method.  相似文献   
62.
The feasibility of composite hydrolysis enzymes in enhanced dewatering of waste-activated sludge (WAS) was verified in this study. A Pearson correlation analysis was conducted to explore the roles of different extracellular polymeric substance (EPS) fractions on WAS dewaterability. The results indicated that tightly bound EPS (TB-EPS) was released into the liquid phase consistently during enzymatic hydrolysis to form soluble EPS (S-EPS) and loosely bound EPS and that the TB-EPS content was positively correlated with the capillary suction time of WAS. A kinetic analysis was carried out to gain further insights into the kinetic variation in TB-EPS removal. It was found that TB-EPS reduction fit a first-order kinetic model and that mild temperature (25–30 °C) and a slightly acidic condition were favorable for the improvement of enzyme activity. Solid phase extraction combined with UV–Vis spectroscopy analysis was used to characterize the processes of migration and transformation of the hydrophobic (HPO), transphilic and hydrophilic (HPI) fractions in EPS during the enzymatic process. The results revealed that HPO and HPI were mainly composed of PN and PS, respectively, and that the enzymatic hydrolysis could enhance the transformation of HPI from TB-EPS to S-EPS, which was the dominant mechanism of improving WAS dewaterability.  相似文献   
63.

Background

This study evaluated the effects of acute high-dose and chronic lifetime exposure to alcohol and exposure patterns on the development of differentiated thyroid cancer (DTC).

Methods

The Thyroid Cancer Longitudinal Study (T-CALOS) included 2,258 DTC patients (449 men and 1,809 women) and 22,580 healthy participants (4,490 men and 18,090 women) who were individually matched by age, gender, and enrollment year. In-person interviews were conducted with a structured questionnaire to obtain epidemiologic data. Clinicopathologic features of the patients were obtained by chart reviews. Odds ratios (ORs) and 95% confidence intervals (95%CI) were estimated using conditional regression models.

Results

While light or moderate drinking behavior was related to a reduced risk of DTC, acute heavy alcohol consumption (151 g or more per event or on a single occasion) was associated with increased risks in men (OR = 2.22, 95%CI = 1.27–3.87) and women (OR = 3.61, 95%CI = 1.52–8.58) compared with never-drinkers. The consumption of alcohol for 31 or more years was a significant risk factor for DTC for both men (31–40 years: OR = 1.58, 95%CI = 1.10–2.28; 41+ years: OR = 3.46, 95%CI = 2.06–5.80) and women (31–40 years: OR = 2.18, 95%CI = 1.62–2.92; 41+ years: OR = 2.71, 95%CI = 1.36–5.05) compared with never-drinkers. The consumption of a large amount of alcohol on a single occasion was also a significant risk factor, even after restricting DTC outcomes to tumor size, lymph node metastasis, extrathyroidal extension and TNM stage.

Conclusion

The findings of this study suggest that the threshold effects of acute high-dose alcohol consumption and long-term alcohol consumption are linked to an increased risk of DTC.  相似文献   
64.
65.
66.
Cucumber mosaic virus (CMV) 2b suppresses RNA silencing primarily through the binding of double‐stranded RNA (dsRNA) of varying sizes. However, the biologically active form of 2b remains elusive. Here, we demonstrate that the single and double alanine substitution mutants in the N‐terminal 15th leucine and 18th methionine of CMV 2b exhibit drastically attenuated virulence in wild‐type plants, but are efficiently rescued in mutant plants defective in RNA‐dependent RNA polymerase 6 (RDR6) and Dicer‐like 4 (DCL4). Moreover, the transgenic plants of 2b, but not 2blm (L15A/M18A), rescue the high infectivity of CMV‐Δ2b through the suppression of antiviral silencing. L15A, M18A or both weaken 2b suppressor activity on local and systemic transgene silencing. In contrast with the high affinity of 2b to short and long dsRNAs, 2blm is significantly compromised in 21‐bp duplex small interfering RNA (siRNA) binding ability, but maintains a strong affinity for long dsRNAs. In cross‐linking assays, 2b can form dimers, tetramers and oligomers after treatment with glutaraldehyde, whereas 2blm only forms dimers, rather than tetramers and oligomers, in vitro. Together, these findings suggest that L15 and M18 of CMV 2b are required for high affinity to ds‐siRNAs and oligomerization activity, which are essential for the suppression activity of 2b on antiviral silencing.  相似文献   
67.
Natriuretic peptide receptor 3 (NPR3) is a clearance receptor by binding and internalizing natriuretic peptides (NPs) for ultimate degradation. Patients with cardiac failure show elevated NPs. NPs are linked to poor long-term survival because of their apoptotic effects. However, the underling mechanisms have not been identified yet. Here we report the role of NPR3 in anti-apoptosis via the breast cancer type 1 susceptibility protein (BRCA1) and tumor necrosis factor α (TNF-α ). To demonstrate a role for NPR3 in apoptosis, stable H9C2 cardiomyocyte cell lines using shRNA to knockdown NPR3 were generated. The activities of caspase-3, 8, and 9 were significantly increased in NPR3 knockdown H9C2 cardiomyocytes. Knockdown of NPR3 increased the expression of BRCA1. Also NPR3 knockdown remarkably increased the activity of cAMP response element-binding protein (CREB), a positive regulatory element for BRCA1 expression. BRCA1 showed dispersed nuclear localization in non-cardiomyocytes while predominantly cytoplasmic localization in H9C2 cells. Meanwhile, NPR3 knockdown significantly increased TNF-α gene expression. These data show that NPR3 knockdown in H9C2 cells triggered both extrinsic and intrinsic apoptotic pathways. NPR3 protects cardiomyocytes from apoptosis through inhibition of cytosolic BRCA1 and TNF-α, which are regulators of apoptosis. Our studies demonstrate anti-apoptosis role of NPR3 in protecting cardiomyocytes and establish the first molecular link between NP system and programmed cell death.  相似文献   
68.
Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant‐specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.  相似文献   
69.
Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as ‘Mini‐Citrus’) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig‐N50 2.2 Mb and Scaffold‐N50 5.2 Mb) for F. hindsii. In total, 32 257 protein‐coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR‐modified F. hindsii were predominantly 1‐bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号