首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   18篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   22篇
  2011年   26篇
  2010年   12篇
  2009年   17篇
  2008年   20篇
  2007年   9篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有268条查询结果,搜索用时 125 毫秒
211.
212.
The current study used three different proteomic strategies, which differed by their extent of intact protein separation, to examine the proteome of a pluripotent mouse embryonic stem cell line, R1. Proteins from whole‐cell lysates were subjected either to 2‐D‐LC, or 1‐DE, or were unfractionated prior to enzymatic digestion and subsequent analysis by MS. The results yielded 1895 identified non‐redundant proteins and, for 128 of these, the specific isoform could be determined based on detection of an isoform‐specific peptide. When compared with two previously published proteomic studies that used the same cell line, the current study reveals 612 new proteins.  相似文献   
213.
Background: Promoter methylation of tumor suppressor genes is a frequent and early event in breast carcinogenesis. Paired tumor tissue and serum samples from women with breast cancer show that promoter methylation is detectable in both sample types, with good concordance. This suggests the potential for these serum markers to be used for breast cancer detection. Methods: The current study was a case–control study nested within the prospective New York University Women's Health Study cohort aimed to assess the ability of promoter methylation in serum to detect pre-clinical disease. Cases were women with blood samples collected within the 6 months preceding breast cancer diagnosis (n = 50). Each case was matched to 2 healthy cancer-free controls and 1 cancer-free control with a history of benign breast disease (BBD). Results: Promoter methylation analysis of four cancer-related genes: — RASSF1A, GSTP1, APC and RARβ2, — was conducted using quantitative methylation-specific PCR. Results showed that the frequency of methylation was lower than expected among cases and higher than expected among controls. Methylation was detected in the promoter region of: RASSF1A in 22.0%, 22.9% and 17.2% of cases, BBD controls and healthy controls respectively; GSTP1 in 4%, 10.4% and 7.1% respectively; APC in 2.0%, 4.4% and 4.2% respectively and RARβ2 in 6.7%, 2.3% and 1.1% respectively. Conclusion: Methylation status of the four genes included in this study was unable to distinguish between cases and either control group. This study highlights some methodological issues to be addressed in planning prospective studies to evaluate methylation markers as diagnostic biomarkers.  相似文献   
214.
Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.  相似文献   
215.
Androgen receptor regulation is pivotal for prostate growth and development. Activation of the receptor is dictated by association with androgen (ligand) and through interaction with co-activators and co-repressors. We have shown previously that cyclin D1 functions as a co-repressor to inhibit ligand-dependent androgen receptor activation. We demonstrate that cyclin D1 directly binds the N terminus of the androgen receptor and that this interaction is independent of ligand. Furthermore, we show that the interaction occurs in the nucleus and does not require the LXXLL motif of cyclin D1. Although two distinct transactivation domains exist in the N terminus (AF-1 and AF-5), the data shown support the hypothesis that cyclin D1 targets the AF-1 transactivation function. The constitutively active AF-5 domain was refractory to cyclin D1 inhibition. By contrast, cyclin D1 completely abolished androgen receptor activity, even in the presence of potent androgen receptor co-activators. This action of cyclin D1 at least partially required de-acetylase activity. Finally, we show that transient, ectopic expression of cyclin D1 results in reduced cell cycle progression in androgen-dependent LNCaP cells independent of CDK4 association. Collectively, our data support a model wherein cyclin D1 has a mitogenic (CDK4-dependent) function and an anti-mitogenic function (dependent on regulation of the AF-1 domain) that can collectively control the rate of androgen-dependent cellular proliferation. These findings provide insight into the non-cell cycle functions of cyclin D1 and provide the impetus to study its pleiotropic effects in androgen-dependent cells, especially prostatic adenocarcinomas.  相似文献   
216.
217.
218.
TNFR-associated death domain protein (TRADD) is a key effector protein of TNFR1 signaling. However, the role of TRADD in other death receptor (DR) signaling pathways, including DR3, has not been completely characterized. Previous studies using overexpression systems suggested that TRADD is recruited to the DR3 complex in response to the DR3 ligand, TNF-like ligand 1A (TL1A), indicating a possible role in DR3 signaling. Using T cells from TRADD knockout mice, we demonstrate in this study that the response of both CD4(+) and CD8(+) T cells to TL1A is dependent upon the presence of TRADD. TRADD knockout T cells therefore lack the appropriate proliferative response to TL1A. Moreover, in the absence of TRADD, both the stimulation of MAPK signaling and activation of NF-κB in response to TL1A are dramatically reduced. Unsurprisingly, TRADD is required for recruitment of receptor interacting protein 1 and TNFR-associated factor 2 to the DR3 signaling complex and for the ubiquitination of receptor interacting protein 1. Thus, our findings definitively establish an essential role of TRADD in DR3 signaling.  相似文献   
219.
Jeifetz D  David-Schwartz R  Borovsky Y  Paran I 《Planta》2011,234(6):1227-1236
Plant architecture is a major motif in plant diversity. The shape of the plant is regulated by genes that have been found to have similar or related functions in different species. However, changes in gene regulation or their recruitment to additional developmental pathways contribute to the wide range of plant patterns. Our aim was to unravel the genetic mechanisms governing the unique architecture of pepper (Capsicum annuum) and to determine whether these genetic factors have conserved functions in other plant species. We describe the pepper CaBLIND (CaBL) gene that is orthologous to the tomato (Solanum lycopersicum) BLIND (BL) and to the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS (RAX). We identified two allelic Cabl mutants that show dramatic reduction in axillary meristem initiation. In addition, Cabl exhibits late flowering and ectopic vegetative growth during the reproductive phase. Double-mutant and expression analyses suggest that CaBL functions independently of FASCICULATE, the pepper ortholog of SELF PRUNING in regulating sympodial growth, but is epistatic to FASCICULATE in controlling axillary meristem formation. Furthermore, CaBL operates independently of CaREVOLUTA and CaLATERAL SUPPRESSOR in regulating axillary branching. Our results provide evidence of CaBL’s conserved function with BL and RAX genes in regulating axillary meristem initiation early in development. In addition, similar to BL but opposite to RAX, CaBL acts to promote the transition from vegetative to reproductive phase. However, in contrast to BL and RAX, CaBL is co-opted to play a role in suppressing vegetative growth during the reproductive phase in pepper.  相似文献   
220.
For the rapid production of influenza vaccine antigens in unlimited quantities, a transition from conventional egg-based production to cell-based and recombinant systems is required. The need for higher-yield, lower-cost, and faster production processes is critical to provide adequate supplies of influenza vaccine to counter global pandemic threats. In this study, recombinant hemagglutinin proteins of influenza virus were expressed in the microalga Schizochytrium sp., an established, fermentable organism grown in large scale for the manufacture of polyunsaturated fatty acids for animal and human health applications. Schizochytrium was capable of exporting the full-length membrane-bound proteins in a secreted form suitable for vaccine formulation. One recombinant hemagglutinin (rHA) protein derived from A/Puerto Rico/8/34 (H1N1) influenza virus was evaluated as a vaccine in a murine challenge model. Protective immunity from lethal challenge with homologous virus was elicited by a single dose of 1.7, 5 or 15 µg rHA with or without adjuvant at survival rates between 80–100%. Full protection (100%) was established at all dose levels with or without adjuvant when mice were given a second vaccination. These data demonstrate the potential of Schizochytrium sp. as a platform for the production of recombinant antigens useful for vaccination against influenza.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号