首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   62篇
  2023年   6篇
  2022年   7篇
  2021年   29篇
  2020年   19篇
  2019年   15篇
  2018年   18篇
  2017年   13篇
  2016年   31篇
  2015年   53篇
  2014年   53篇
  2013年   77篇
  2012年   68篇
  2011年   86篇
  2010年   55篇
  2009年   42篇
  2008年   43篇
  2007年   44篇
  2006年   52篇
  2005年   37篇
  2004年   42篇
  2003年   35篇
  2002年   30篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1962年   1篇
排序方式: 共有912条查询结果,搜索用时 931 毫秒
901.
The innate immune system provides defence against parasites and pathogens. This defence comes at a cost, suggesting that immune function should exhibit plasticity in response to variation in environmental threats. Density-dependent prophylaxis (DDP) has been demonstrated mostly in phase-polyphenic insects, where larval group size determines levels of immune function in either adults or later larval instars. Social insects exhibit extreme sociality, but DDP has been suggested to be absent from these ecologically dominant taxa. Here we show that adult bumble-bee workers (Bombus terrestris) exhibit rapid plasticity in their immune function in response to social context. These results suggest that DDP does not depend upon larval conditions, and is likely to be a widespread and labile response to rapidly changing conditions in adult insect populations. This has obvious ramifications for experimental analysis of immune function in insects, and serious implications for our understanding of the epidemiology and impact of pathogens and parasites in spatially structured adult insect populations.  相似文献   
902.
How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.Subject terms: Genome-wide analysis of gene expression, Innate immunity, Bioinformatics  相似文献   
903.
904.
Insects harbor a wide range of microbial symbionts, but their influence on host phenotypes is described in a limited number of biological models. One experimental approach to gain knowledge on the effects of symbionts to their hosts is to create insect lines with and without symbionts and examine their phenotypes. However, the success rate of symbiont elimination and introduction methods is dependent on several parameters that are scarcely tested or described. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), is a model insect of symbiosis studies. It harbors a primary symbiont that supplies the host with essential amino acids, and an array of secondary symbionts whose effects have been assessed by manipulating their presence/absence in the insect. Here, we describe the influence of key parameters on the success rate of symbiont manipulation using the pea aphid–secondary symbiont system. We compared two elimination methods differing in antibiotic treatment using several aphid–symbiont combinations. We also created new aphid host–symbiont combinations by secondary symbiont introduction and examined the effects of larval stage of recipient aphids on introduction success. Our study revealed that the aphid–symbiont combination has strong influence on both symbiont introduction and elimination success rates, and that the type of antibiotics and the larval stage of recipient aphids influence the elimination and introduction success rate, respectively.  相似文献   
905.
Background information. Despite its pro‐fibrinolytic activity, tPA (tissue plasminogen activator) is a serine protease known to influence a number of physiological and pathological functions in the central nervous system. Accordingly, tPA was reported to mediate some of its functions in the central nervous system through NMDA (N‐methyl‐d ‐aspartate) receptors, LRP (low‐density lipoprotein receptor‐related protein) or annexin II. Results. We provide here both in vitro and in vivo evidence that tPA could mediate proteolysis and subsequent delocalization of neuronal nitric oxide synthase, thereby reducing endogenous neuronal nitric oxide release. We also demonstrate that although this effect is independent of NMDA receptors, LRP signalling and calpain‐mediated proteolysis, it is dependent on the ability of tPA to promote the conversion of plasminogen into plasmin. Conclusion. Altogether, these results demonstrate a new function for tPA in the central nervous system, which most likely contributes to its pleiotropic functions.  相似文献   
906.
Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality.  相似文献   
907.
Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.  相似文献   
908.
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune‐stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life‐history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host–pathogen interactions.  相似文献   
909.
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号