首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   1篇
  2023年   3篇
  2021年   5篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2006年   2篇
  2004年   2篇
  2002年   1篇
排序方式: 共有28条查询结果,搜索用时 234 毫秒
21.
The role of the constitutive androstane receptor (CAR) in xenobiotic metabolism by inducing expression of cytochromes P450 is well known, but CAR has also been implicated in the down-regulation of key genes involved in bile acid synthesis, gluconeogenesis, and fatty acid beta-oxidation by largely unknown mechanisms. Because a key hepatic factor, hepatic nuclear factor-4 (HNF-4), is crucial for the expression of many of these genes, we examined whether CAR could suppress HNF-4 transactivation. Expression of CAR inhibited HNF-4 transactivation of CYP7A1, a key gene in bile acid synthesis, in HepG2 cells, and mutation of the DNA binding domain of CAR impaired this inhibition. Gel shift assays revealed that CAR competes with HNF-4 for binding to the DR1 motif in the CYP7A1 promoter. TCPOBOP, a CAR agonist that increases the interaction of CAR with coactivators, potentiated CAR inhibition of HNF-4 transactivation. Furthermore, inhibition by CAR was reversed by expression of increasing amounts of GRIP-1 or PGC-1alpha, indicating that CAR competes with HNF-4 for these coactivators. Treatment of mice with phenobarbital or TCPOBOP resulted in decreased hepatic mRNA levels of the reported genes down-regulated by CAR, including Cyp7a1 and Pepck. In vivo recruitment of endogenous CAR to the promoters of Cyp7a1 and Pepck was detected in mouse liver after phenobarbital treatment, whereas association of HNF-4 and coactivators, GRIP-1, p300, and PGC-1alpha, with these promoters was significantly decreased. Our data suggest that CAR inhibits HNF-4 activity by competing with HNF-4 for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha, which may be a general mechanism by which CAR down-regulates key genes in hepatic lipid and glucose metabolism.  相似文献   
22.
23.
AimInvasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable areas of IAS can prevent their further expansion. Ageratina adenophora is an invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable areas of A. adenophora remain unclear along with its response to climate change. This study explored and mapped the current and future potential suitable areas of Ageratina adenophora.LocationGlobal.TaxaAsteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed.MethodsBased on A. adenophora occurrence data and climate data, we predicted its suitable areas of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the potential suitable area distribution characteristics of this weed and the “ecospat” package in R to analyze its altitudinal distribution changes.ResultsThe area under the curve (AUC) value (>0.9) and true skill statistics (TSS) value (>0.8) indicated excelled model performance. Among environment factors, mean temperature of coldest quarter contributed most to the model. Globally, the suitable areas for A. adenophora invasion decreased under climate change scenarios, although regional increases were observed, including in six biodiversity hotspot regions. The potential suitable areas of A. adenophora under climate change would expand in regions with higher elevation (3,000–3,500 m).Main conclusionsMean temperature of coldest quarter was the most important variable influencing the potential suitable area of A. Adenophora. Under the background of a warming climate, the potential suitable area of A. adenophora will shrink globally but increase in six biodiversity hotspot regions. The potential suitable area of Aadenophora would expand at higher elevation (3,000–3,500 m) under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.  相似文献   
24.
25.
The induction of CYP2B gene expression by phenobarbital (PB) is mediated by the translocation of the constitutive androstane receptor (CAR) from the cytoplasm to the nucleus. The CAR/RXR heterodimer binds to two DR-4 sites in a complex phenobarbital responsive unit (PBRU) in the CYP2B gene. The short heterodimer partner (SHP), an orphan nuclear receptor that lacks a conventional DNA binding domain, was initially identified by its interaction with CAR. We have examined the role of SHP in CAR-mediated transactivation of the CYP2B gene. Coexpression of SHP inhibited the transactivation of the CYP2B gene by CAR in cultured hepatoma cells and the p160 coactivator GRIP1 reversed the inhibition. The interaction of CAR with SHP was confirmed by GST pulldown experiments. SHP did not block the binding of either CAR/RXR to the PBRU or binding of GRIP1 to the CAR/RXR complex in gel mobility shift assays, but slightly increased CAR/RXR binding and slightly altered the mobility of the CAR/RXR/GRIP1 complex, suggesting an interaction of SHP with these complexes. The presence of SHP in the complexes, however, could not be detected in an antibody supershift assay. Recombinant corepressors mSin3A, SMRT, and HDAC1, but not NCoR1, interacted with GST-SHP but each of these corepressors in liver nuclear extracts bound to GST-SHP. SMRT and NCoR1 inhibited CAR-mediated activation independent of SHP, but mSin3A and HDAC1 had little effect alone, and were additive with SHP. These studies demonstrate that SHP does not inhibit CAR-mediated trans-activation by interfering with DNA binding or by competition with GRIP1. Instead, SHP may either inhibit recruitment of other coactivators by GRIP1 or actively recruit corepressors directly to the CAR/RXR/PBRU complex.  相似文献   
26.
Airway exposure levels of lipopolysaccharide (LPS) are known to determine type I versus type II helper T cell induced experimental asthma. While low doses of LPS derive Th2 inflammatory responses, high (and/or intermediate) LPS levels induce Th1- or Th17-dominant responses. The present paper develops a mathematical model of the phenotypic switches among three Th phenotypes (Th1, Th2, and Th17) in response to various LPS levels. In the present work, we simplify the complex network of the interactions between cells and regulatory molecules. The model describes the nonlinear cross-talks between the IL-4/Th2 activities and a key regulatory molecule, transforming growth factor β (TGF-β), in response to high, intermediate, and low levels of LPS. The model characterizes development of three phenotypes (Th1, Th2, and Th17) and predicts the onset of a new phenotype, Th17, under the tight control of TGF-β. Analysis of the model illustrates the mono-, bi-, and oneway-switches in the key regulatory parameter sets in the absence or presence of time delays. The model also predicts coexistence of those phenotypes and Th1- or Th2-dominant immune responses in a spatial domain under various biochemical and bio-mechanical conditions in the microenvironment.  相似文献   
27.
Acute administration of trastuzumab (TZB) may induce various forms of cognitive impairment. These cancer-related cognitive changes (CRCC) are regulated by an adverse biological process involving cancer stem cells (CSCs) and IL-6. Recent studies have reported that atorvastatin (ATV) may change the dynamic of cognitive impairment in a combination (TZB+ATV) therapy. In this study, we investigate the mutual interactions between cancer stem cells and the tumor cells that facilitate cognitive impairment during long term TZB therapy by developing a mathematical model that involves IL-6 and the key apoptotic regulation. These include the densities of tumor cells and CSCs, and the concentrations of intracellular signaling molecules (NFκB, Bcl-2, BAX). We apply the mathematical model to a single or combination (ATV+TZB) therapy used in the experiments to demonstrate that the CSCs can enhance CRCC by secreting IL-6 and ATV may interfere the whole regulation. We show that the model can both reproduce the major experimental observation on onset and prevention of CRCC, and suggest several important predictions to guide future experiments with the goal of the development of new anti-tumor and anti-CRCC strategies. Moreover, using this model, we investigate the fundamental mechanism of onset of cognitive impairment in TZB-treated patients and the impact of alternating therapies on the anti-tumor efficacy and intracellular response to different treatment schedules.  相似文献   
28.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号